317,558 research outputs found
Spectrum-based deep neural networks for fraud detection
In this paper, we focus on fraud detection on a signed graph with only a
small set of labeled training data. We propose a novel framework that combines
deep neural networks and spectral graph analysis. In particular, we use the
node projection (called as spectral coordinate) in the low dimensional spectral
space of the graph's adjacency matrix as input of deep neural networks.
Spectral coordinates in the spectral space capture the most useful topology
information of the network. Due to the small dimension of spectral coordinates
(compared with the dimension of the adjacency matrix derived from a graph),
training deep neural networks becomes feasible. We develop and evaluate two
neural networks, deep autoencoder and convolutional neural network, in our
fraud detection framework. Experimental results on a real signed graph show
that our spectrum based deep neural networks are effective in fraud detection
Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey
Dynamic networks are used in a wide range of fields, including social network
analysis, recommender systems, and epidemiology. Representing complex networks
as structures changing over time allow network models to leverage not only
structural but also temporal patterns. However, as dynamic network literature
stems from diverse fields and makes use of inconsistent terminology, it is
challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a
lot of attention in recent years for their ability to perform well on a range
of network science tasks, such as link prediction and node classification.
Despite the popularity of graph neural networks and the proven benefits of
dynamic network models, there has been little focus on graph neural networks
for dynamic networks. To address the challenges resulting from the fact that
this research crosses diverse fields as well as to survey dynamic graph neural
networks, this work is split into two main parts. First, to address the
ambiguity of the dynamic network terminology we establish a foundation of
dynamic networks with consistent, detailed terminology and notation. Second, we
present a comprehensive survey of dynamic graph neural network models using the
proposed terminologyComment: 28 pages, 9 figures, 8 table
Learning flexible representations of stochastic processes on graphs
Graph convolutional networks adapt the architecture of convolutional neural
networks to learn rich representations of data supported on arbitrary graphs by
replacing the convolution operations of convolutional neural networks with
graph-dependent linear operations. However, these graph-dependent linear
operations are developed for scalar functions supported on undirected graphs.
We propose a class of linear operations for stochastic (time-varying) processes
on directed (or undirected) graphs to be used in graph convolutional networks.
We propose a parameterization of such linear operations using functional
calculus to achieve arbitrarily low learning complexity. The proposed approach
is shown to model richer behaviors and display greater flexibility in learning
representations than product graph methods
- …
