141 research outputs found

    Simple PTAS's for families of graphs excluding a minor

    Full text link
    We show that very simple algorithms based on local search are polynomial-time approximation schemes for Maximum Independent Set, Minimum Vertex Cover and Minimum Dominating Set, when the input graphs have a fixed forbidden minor.Comment: To appear in Discrete Applied Mathematic

    On the existence of asymptotically good linear codes in minor-closed classes

    Full text link
    Let C=(C1,C2,)\mathcal{C} = (C_1, C_2, \ldots) be a sequence of codes such that each CiC_i is a linear [ni,ki,di][n_i,k_i,d_i]-code over some fixed finite field F\mathbb{F}, where nin_i is the length of the codewords, kik_i is the dimension, and did_i is the minimum distance. We say that C\mathcal{C} is asymptotically good if, for some ε>0\varepsilon > 0 and for all ii, niin_i \geq i, ki/niεk_i/n_i \geq \varepsilon, and di/niεd_i/n_i \geq \varepsilon. Sequences of asymptotically good codes exist. We prove that if C\mathcal{C} is a class of GF(pn)(p^n)-linear codes (where pp is prime and n1n \geq 1), closed under puncturing and shortening, and if C\mathcal{C} contains an asymptotically good sequence, then C\mathcal{C} must contain all GF(p)(p)-linear codes. Our proof relies on a powerful new result from matroid structure theory

    A single exponential bound for the redundant vertex Theorem on surfaces

    Full text link
    Let s1, t1,. . . sk, tk be vertices in a graph G embedded on a surface \sigma of genus g. A vertex v of G is "redundant" if there exist k vertex disjoint paths linking si and ti (1 \lequal i \lequal k) in G if and only if such paths also exist in G - v. Robertson and Seymour proved in Graph Minors VII that if v is "far" from the vertices si and tj and v is surrounded in a planar part of \sigma by l(g, k) disjoint cycles, then v is redundant. Unfortunately, their proof of the existence of l(g, k) is not constructive. In this paper, we give an explicit single exponential bound in g and k

    The matroid secretary problem for minor-closed classes and random matroids

    Full text link
    We prove that for every proper minor-closed class MM of matroids representable over a prime field, there exists a constant-competitive matroid secretary algorithm for the matroids in MM. This result relies on the extremely powerful matroid minor structure theory being developed by Geelen, Gerards and Whittle. We also note that for asymptotically almost all matroids, the matroid secretary algorithm that selects a random basis, ignoring weights, is (2+o(1))(2+o(1))-competitive. In fact, assuming the conjecture that almost all matroids are paving, there is a (1+o(1))(1+o(1))-competitive algorithm for almost all matroids.Comment: 15 pages, 0 figure

    Grad and Classes with Bounded Expansion II. Algorithmic Aspects

    Full text link
    Classes of graphs with bounded expansion are a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, ∇r(G). These classes are also characterized by the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. These results lead to several new linear time algorithms, such as an algorithm for counting all the isomorphs of a fixed graph in an input graph or an algorithm for checking whether there exists a subset of vertices of a priori bounded size such that the subgraph induced by this subset satisfies some arbirtrary but fixed first order sentence. We also show that for fixed p, computing the distances between two vertices up to distance p may be performed in constant time per query after a linear time preprocessing. We also show, extending several earlier results, that a class of graphs has sublinear separators if it has sub-exponential expansion. This result result is best possible in general

    Classes of graphs with small rank decompositions are chi-bounded

    Get PDF
    A class of graphs G is chi-bounded if the chromatic number of graphs in G is bounded by a function of the clique number. We show that if a class G is chi-bounded,then every class of graphs admitting a decomposition along cuts of small rank to graphs from G is chi-bounded. As a corollary, we obtain that every class of graphs with bounded rank-width (or equivalently, clique-width) is chi-bounded

    Distance-two coloring of sparse graphs

    Full text link
    Consider a graph G=(V,E)G = (V, E) and, for each vertex vVv \in V, a subset Σ(v)\Sigma(v) of neighbors of vv. A Σ\Sigma-coloring is a coloring of the elements of VV so that vertices appearing together in some Σ(v)\Sigma(v) receive pairwise distinct colors. An obvious lower bound for the minimum number of colors in such a coloring is the maximum size of a set Σ(v)\Sigma(v), denoted by ρ(Σ)\rho(\Sigma). In this paper we study graph classes FF for which there is a function ff, such that for any graph GFG \in F and any Σ\Sigma, there is a Σ\Sigma-coloring using at most f(ρ(Σ))f(\rho(\Sigma)) colors. It is proved that if such a function exists for a class FF, then ff can be taken to be a linear function. It is also shown that such classes are precisely the classes having bounded star chromatic number. We also investigate the list version and the clique version of this problem, and relate the existence of functions bounding those parameters to the recently introduced concepts of classes of bounded expansion and nowhere-dense classes.Comment: 13 pages - revised versio
    corecore