7,006 research outputs found

    Next Generation Cluster Editing

    Get PDF
    This work aims at improving the quality of structural variant prediction from the mapped reads of a sequenced genome. We suggest a new model based on cluster editing in weighted graphs and introduce a new heuristic algorithm that allows to solve this problem quickly and with a good approximation on the huge graphs that arise from biological datasets

    Degrees and distances in random and evolving Apollonian networks

    Get PDF
    This paper studies Random and Evolving Apollonian networks (RANs and EANs), in d dimension for any d>=2, i.e. dynamically evolving random d dimensional simplices looked as graphs inside an initial d-dimensional simplex. We determine the limiting degree distribution in RANs and show that it follows a power law tail with exponent tau=(2d-1)/(d-1). We further show that the degree distribution in EANs converges to the same degree distribution if the simplex-occupation parameter in the n-th step of the dynamics is q_n->0 and sum_{n=0}^infty q_n =infty. This result gives a rigorous proof for the conjecture of Zhang et al. that EANs tend to show similar behavior as RANs once the occupation parameter q->0. We also determine the asymptotic behavior of shortest paths in RANs and EANs for arbitrary d dimensions. For RANs we show that the shortest path between two uniformly chosen vertices (typical distance), the flooding time of a uniformly picked vertex and the diameter of the graph after n steps all scale as constant times log n. We determine the constants for all three cases and prove a central limit theorem for the typical distances. We prove a similar CLT for typical distances in EANs
    corecore