17 research outputs found

    Incorporating Language-Driven Appearance Knowledge Units with Visual Cues in Pedestrian Detection

    Full text link
    Large language models (LLMs) have shown their capability in understanding contextual and semantic information regarding appearance knowledge of instances. In this paper, we introduce a novel approach to utilize the strength of an LLM in understanding contextual appearance variations and to leverage its knowledge into a vision model (here, pedestrian detection). While pedestrian detection is considered one of crucial tasks directly related with our safety (e.g., intelligent driving system), it is challenging because of varying appearances and poses in diverse scenes. Therefore, we propose to formulate language-driven appearance knowledge units and incorporate them with visual cues in pedestrian detection. To this end, we establish description corpus which includes numerous narratives describing various appearances of pedestrians and others. By feeding them through an LLM, we extract appearance knowledge sets that contain the representations of appearance variations. After that, we perform a task-prompting process to obtain appearance knowledge units which are representative appearance knowledge guided to be relevant to a downstream pedestrian detection task. Finally, we provide plentiful appearance information by integrating the language-driven knowledge units with visual cues. Through comprehensive experiments with various pedestrian detectors, we verify the effectiveness of our method showing noticeable performance gains and achieving state-of-the-art detection performance.Comment: 11 pages, 4 figures, 9 table

    Data-Driven but Privacy-Conscious: Pedestrian Dataset De-identification via Full-Body Person Synthesis

    Full text link
    The advent of data-driven technology solutions is accompanied by an increasing concern with data privacy. This is of particular importance for human-centered image recognition tasks, such as pedestrian detection, re-identification, and tracking. To highlight the importance of privacy issues and motivate future research, we motivate and introduce the Pedestrian Dataset De-Identification (PDI) task. PDI evaluates the degree of de-identification and downstream task training performance for a given de-identification method. As a first baseline, we propose IncogniMOT, a two-stage full-body de-identification pipeline based on image synthesis via generative adversarial networks. The first stage replaces target pedestrians with synthetic identities. To improve downstream task performance, we then apply stage two, which blends and adapts the synthetic image parts into the data. To demonstrate the effectiveness of IncogniMOT, we generate a fully de-identified version of the MOT17 pedestrian tracking dataset and analyze its application as training data for pedestrian re-identification, detection, and tracking models. Furthermore, we show how our data is able to narrow the synthetic-to-real performance gap in a privacy-conscious manner
    corecore