66,066 research outputs found

    Better Pseudorandom Generators from Milder Pseudorandom Restrictions

    Full text link
    We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near-optimal seed-length even in the low-error regime: We get seed-length O(log (n/epsilon)) for error epsilon. Previously, only constructions with seed-length O(\log^{3/2} n) or O(\log^2 n) were known for these classes with polynomially small error. The (pseudo)random restrictions we use are milder than those typically used for proving circuit lower bounds in that we only set a constant fraction of the bits at a time. While such restrictions do not simplify the functions drastically, we show that they can be derandomized using small-bias spaces.Comment: To appear in FOCS 201

    Inter edge Tunneling in Quantum Hall Line Junctions

    Full text link
    We propose a scenario to understand the puzzling features of the recent experiment by Kang and coworkers on tunneling between laterally coupled quantum Hall liquids by modeling the system as a pair of coupled chiral Luttinger liquid with a point contact tunneling center. We show that for filling factors ν1\nu\sim1 the effects of the Coulomb interactions move the system deep into strong tunneling regime, by reducing the magnitude of the Luttinger parameter KK, leading to the appearance of a zero-bias differential conductance peak of magnitude Gt=Ke2/hG_t=Ke^2/h at zero temperature. The abrupt appearance of the zero bias peak as the filling factor is increased past a value ν1 \nu^* \gtrsim 1, and its gradual disappearance thereafter can be understood as a crossover controlled by the main energy scales of this system: the bias voltage VV, the crossover scale TKT_K, and the temperature TT. The low height of the zero bias peak 0.1e2/h\sim 0.1e^2/h observed in the experiment, and its broad finite width, can be understood naturally within this picture. Also, the abrupt reappearance of the zero-bias peak for ν2\nu \gtrsim 2 can be explained as an effect caused by spin reversed electrons, \textit{i. e.} if the 2DEG is assumed to have a small polarization near ν2\nu\sim2. We also predict that as the temperature is lowered ν\nu^* should decrease, and the width of zero-bias peak should become wider. This picture also predicts the existence of similar zero bias peak in the spin tunneling conductance near for ν2\nu \gtrsim 2.Comment: 17 pages, 8 figure

    Using Localised ‘Gossip’ to Structure Distributed Learning

    Get PDF
    The idea of a “memetic” spread of solutions through a human culture in parallel to their development is applied as a distributed approach to learning. Local parts of a problem are associated with a set of overlappingt localities in a space and solutions are then evolved in those localites. Good solutions are not only crossed with others to search for better solutions but also they propogate across the areas of the problem space where they are relatively successful. Thus the whole population co-evolves solutions with the domains in which they are found to work. This approach is compared to the equivalent global evolutionary computation approach with respect to predicting the occcurence of heart disease in the Cleveland data set. It greatly outperforms the global approach, but the space of attributes within which this evolutionary process occurs can effect its efficiency

    Adiabatically switched-on electrical bias in continuous systems, and the Landauer-Buttiker formula

    Get PDF
    Consider a three dimensional system which looks like a cross-connected pipe system, i.e. a small sample coupled to a finite number of leads. We investigate the current running through this system, in the linear response regime, when we adiabatically turn on an electrical bias between leads. The main technical tool is the use of a finite volume regularization, which allows us to define the current coming out of a lead as the time derivative of its charge. We finally prove that in virtually all physically interesting situations, the conductivity tensor is given by a Landauer-B{\"u}ttiker type formula.Comment: 20 pages, submitte

    On Regularization Parameter Estimation under Covariate Shift

    Full text link
    This paper identifies a problem with the usual procedure for L2-regularization parameter estimation in a domain adaptation setting. In such a setting, there are differences between the distributions generating the training data (source domain) and the test data (target domain). The usual cross-validation procedure requires validation data, which can not be obtained from the unlabeled target data. The problem is that if one decides to use source validation data, the regularization parameter is underestimated. One possible solution is to scale the source validation data through importance weighting, but we show that this correction is not sufficient. We conclude the paper with an empirical analysis of the effect of several importance weight estimators on the estimation of the regularization parameter.Comment: 6 pages, 2 figures, 2 tables. Accepted to ICPR 201
    corecore