151,330 research outputs found

    Faster gradient descent and the efficient recovery of images

    Full text link
    Much recent attention has been devoted to gradient descent algorithms where the steepest descent step size is replaced by a similar one from a previous iteration or gets updated only once every second step, thus forming a {\em faster gradient descent method}. For unconstrained convex quadratic optimization these methods can converge much faster than steepest descent. But the context of interest here is application to certain ill-posed inverse problems, where the steepest descent method is known to have a smoothing, regularizing effect, and where a strict optimization solution is not necessary. Specifically, in this paper we examine the effect of replacing steepest descent by a faster gradient descent algorithm in the practical context of image deblurring and denoising tasks. We also propose several highly efficient schemes for carrying out these tasks independently of the step size selection, as well as a scheme for the case where both blur and significant noise are present. In the above context there are situations where many steepest descent steps are required, thus building slowness into the solution procedure. Our general conclusion regarding gradient descent methods is that in such cases the faster gradient descent methods offer substantial advantages. In other situations where no such slowness buildup arises the steepest descent method can still be very effective

    On the Finite Time Convergence of Cyclic Coordinate Descent Methods

    Full text link
    Cyclic coordinate descent is a classic optimization method that has witnessed a resurgence of interest in machine learning. Reasons for this include its simplicity, speed and stability, as well as its competitive performance on 1\ell_1 regularized smooth optimization problems. Surprisingly, very little is known about its finite time convergence behavior on these problems. Most existing results either just prove convergence or provide asymptotic rates. We fill this gap in the literature by proving O(1/k)O(1/k) convergence rates (where kk is the iteration counter) for two variants of cyclic coordinate descent under an isotonicity assumption. Our analysis proceeds by comparing the objective values attained by the two variants with each other, as well as with the gradient descent algorithm. We show that the iterates generated by the cyclic coordinate descent methods remain better than those of gradient descent uniformly over time.Comment: 20 page
    corecore