25 research outputs found

    Zero-bias autoencoders and the benefits of co-adapting features

    Full text link
    Regularized training of an autoencoder typically results in hidden unit biases that take on large negative values. We show that negative biases are a natural result of using a hidden layer whose responsibility is to both represent the input data and act as a selection mechanism that ensures sparsity of the representation. We then show that negative biases impede the learning of data distributions whose intrinsic dimensionality is high. We also propose a new activation function that decouples the two roles of the hidden layer and that allows us to learn representations on data with very high intrinsic dimensionality, where standard autoencoders typically fail. Since the decoupled activation function acts like an implicit regularizer, the model can be trained by minimizing the reconstruction error of training data, without requiring any additional regularization

    "Mental Rotation" by Optimizing Transforming Distance

    Full text link
    The human visual system is able to recognize objects despite transformations that can drastically alter their appearance. To this end, much effort has been devoted to the invariance properties of recognition systems. Invariance can be engineered (e.g. convolutional nets), or learned from data explicitly (e.g. temporal coherence) or implicitly (e.g. by data augmentation). One idea that has not, to date, been explored is the integration of latent variables which permit a search over a learned space of transformations. Motivated by evidence that people mentally simulate transformations in space while comparing examples, so-called "mental rotation", we propose a transforming distance. Here, a trained relational model actively transforms pairs of examples so that they are maximally similar in some feature space yet respect the learned transformational constraints. We apply our method to nearest-neighbour problems on the Toronto Face Database and NORB

    Predictive Encoding of Contextual Relationships for Perceptual Inference, Interpolation and Prediction

    Full text link
    We propose a new neurally-inspired model that can learn to encode the global relationship context of visual events across time and space and to use the contextual information to modulate the analysis by synthesis process in a predictive coding framework. The model learns latent contextual representations by maximizing the predictability of visual events based on local and global contextual information through both top-down and bottom-up processes. In contrast to standard predictive coding models, the prediction error in this model is used to update the contextual representation but does not alter the feedforward input for the next layer, and is thus more consistent with neurophysiological observations. We establish the computational feasibility of this model by demonstrating its ability in several aspects. We show that our model can outperform state-of-art performances of gated Boltzmann machines (GBM) in estimation of contextual information. Our model can also interpolate missing events or predict future events in image sequences while simultaneously estimating contextual information. We show it achieves state-of-art performances in terms of prediction accuracy in a variety of tasks and possesses the ability to interpolate missing frames, a function that is lacking in GBM

    Exemplar-Centered Supervised Shallow Parametric Data Embedding

    Full text link
    Metric learning methods for dimensionality reduction in combination with k-Nearest Neighbors (kNN) have been extensively deployed in many classification, data embedding, and information retrieval applications. However, most of these approaches involve pairwise training data comparisons, and thus have quadratic computational complexity with respect to the size of training set, preventing them from scaling to fairly big datasets. Moreover, during testing, comparing test data against all the training data points is also expensive in terms of both computational cost and resources required. Furthermore, previous metrics are either too constrained or too expressive to be well learned. To effectively solve these issues, we present an exemplar-centered supervised shallow parametric data embedding model, using a Maximally Collapsing Metric Learning (MCML) objective. Our strategy learns a shallow high-order parametric embedding function and compares training/test data only with learned or precomputed exemplars, resulting in a cost function with linear computational complexity for both training and testing. We also empirically demonstrate, using several benchmark datasets, that for classification in two-dimensional embedding space, our approach not only gains speedup of kNN by hundreds of times, but also outperforms state-of-the-art supervised embedding approaches.Comment: accepted to IJCAI201
    corecore