2 research outputs found

    On the Hybrid Minimum Principle On Lie Groups and the Exponential Gradient HMP Algorithm

    Full text link
    This paper provides a geometrical derivation of the Hybrid Minimum Principle (HMP) for autonomous hybrid systems whose state manifolds constitute Lie groups (G,⋆)(G,\star) which are left invariant under the controlled dynamics of the system, and whose switching manifolds are defined as smooth embedded time invariant submanifolds of GG. The analysis is expressed in terms of extremal (i.e. optimal) trajectories on the cotangent bundle of the state manifold GG. The Hybrid Maximum Principle (HMP) algorithm introduced in \cite{Shaikh} is extended to the so-called Exponential Gradient algorithm. The convergence analysis for the algorithm is based upon the LaSalle Invariance Principle and simulation results illustrate their efficacy

    Optimality Condition-Based Sensitivity Analysis of Optimal Control for Hybrid Systems and Its Application

    Get PDF
    Gradient-based algorithms are efficient to compute numerical solutions of optimal control problems for hybrid systems (OCPHS), and the key point is how to get the sensitivity analysis of the optimal control problems. In this paper, optimality condition-based sensitivity analysis of optimal control for hybrid systems with mode invariants and control constraints is addressed under a priori fixed mode transition order. The decision variables are the mode transition instant sequence and admissible continuous control functions. After equivalent transformation of the original problem, the derivatives of the objective functional with respect to control variables are established based on optimal necessary conditions. By using the obtained derivatives, a control vector parametrization method is implemented to obtain the numerical solution to the OCPHS. Examples are given to illustrate the results
    corecore