22 research outputs found

    Gradient Hard Thresholding Pursuit for Sparsity-Constrained Optimization

    Full text link
    Hard Thresholding Pursuit (HTP) is an iterative greedy selection procedure for finding sparse solutions of underdetermined linear systems. This method has been shown to have strong theoretical guarantee and impressive numerical performance. In this paper, we generalize HTP from compressive sensing to a generic problem setup of sparsity-constrained convex optimization. The proposed algorithm iterates between a standard gradient descent step and a hard thresholding step with or without debiasing. We prove that our method enjoys the strong guarantees analogous to HTP in terms of rate of convergence and parameter estimation accuracy. Numerical evidences show that our method is superior to the state-of-the-art greedy selection methods in sparse logistic regression and sparse precision matrix estimation tasks

    Stable Recovery Of Sparse Vectors From Random Sinusoidal Feature Maps

    Full text link
    Random sinusoidal features are a popular approach for speeding up kernel-based inference in large datasets. Prior to the inference stage, the approach suggests performing dimensionality reduction by first multiplying each data vector by a random Gaussian matrix, and then computing an element-wise sinusoid. Theoretical analysis shows that collecting a sufficient number of such features can be reliably used for subsequent inference in kernel classification and regression. In this work, we demonstrate that with a mild increase in the dimension of the embedding, it is also possible to reconstruct the data vector from such random sinusoidal features, provided that the underlying data is sparse enough. In particular, we propose a numerically stable algorithm for reconstructing the data vector given the nonlinear features, and analyze its sample complexity. Our algorithm can be extended to other types of structured inverse problems, such as demixing a pair of sparse (but incoherent) vectors. We support the efficacy of our approach via numerical experiments

    Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow

    Get PDF
    This paper considers the noisy sparse phase retrieval problem: recovering a sparse signal x∈Rpx \in \mathbb{R}^p from noisy quadratic measurements yj=(ajβ€²x)2+Ο΅jy_j = (a_j' x )^2 + \epsilon_j, j=1,…,mj=1, \ldots, m, with independent sub-exponential noise Ο΅j\epsilon_j. The goals are to understand the effect of the sparsity of xx on the estimation precision and to construct a computationally feasible estimator to achieve the optimal rates. Inspired by the Wirtinger Flow [12] proposed for noiseless and non-sparse phase retrieval, a novel thresholded gradient descent algorithm is proposed and it is shown to adaptively achieve the minimax optimal rates of convergence over a wide range of sparsity levels when the aja_j's are independent standard Gaussian random vectors, provided that the sample size is sufficiently large compared to the sparsity of xx.Comment: 28 pages, 4 figure
    corecore