1,803 research outputs found

    On the Implicit Bias in Deep-Learning Algorithms

    Full text link
    Gradient-based deep-learning algorithms exhibit remarkable performance in practice, but it is not well-understood why they are able to generalize despite having more parameters than training examples. It is believed that implicit bias is a key factor in their ability to generalize, and hence it was widely studied in recent years. In this short survey, we explain the notion of implicit bias, review main results and discuss their implications.Comment: Some minor edit

    Generator Born from Classifier

    Full text link
    In this paper, we make a bold attempt toward an ambitious task: given a pre-trained classifier, we aim to reconstruct an image generator, without relying on any data samples. From a black-box perspective, this challenge seems intractable, since it inevitably involves identifying the inverse function for a classifier, which is, by nature, an information extraction process. As such, we resort to leveraging the knowledge encapsulated within the parameters of the neural network. Grounded on the theory of Maximum-Margin Bias of gradient descent, we propose a novel learning paradigm, in which the generator is trained to ensure that the convergence conditions of the network parameters are satisfied over the generated distribution of the samples. Empirical validation from various image generation tasks substantiates the efficacy of our strategy

    Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss

    Get PDF
    Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks. Towards understanding this phenomenon, we analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations. We show that the limits of the gradient flow on exponentially tailed losses can be fully characterized as a max-margin classifier in a certain non-Hilbertian space of functions. In presence of hidden low-dimensional structures, the resulting margin is independent of the ambiant dimension, which leads to strong generalization bounds. In contrast, training only the output layer implicitly solves a kernel support vector machine, which a priori does not enjoy such an adaptivity. Our analysis of training is non-quantitative in terms of running time but we prove computational guarantees in simplified settings by showing equivalences with online mirror descent. Finally, numerical experiments suggest that our analysis describes well the practical behavior of two-layer neural networks with ReLU activation and confirm the statistical benefits of this implicit bias
    • …
    corecore