2 research outputs found

    Google's Cloud Vision API Is Not Robust To Noise

    Full text link
    Google has recently introduced the Cloud Vision API for image analysis. According to the demonstration website, the API "quickly classifies images into thousands of categories, detects individual objects and faces within images, and finds and reads printed words contained within images." It can be also used to "detect different types of inappropriate content from adult to violent content." In this paper, we evaluate the robustness of Google Cloud Vision API to input perturbation. In particular, we show that by adding sufficient noise to the image, the API generates completely different outputs for the noisy image, while a human observer would perceive its original content. We show that the attack is consistently successful, by performing extensive experiments on different image types, including natural images, images containing faces and images with texts. For instance, using images from ImageNet dataset, we found that adding an average of 14.25% impulse noise is enough to deceive the API. Our findings indicate the vulnerability of the API in adversarial environments. For example, an adversary can bypass an image filtering system by adding noise to inappropriate images. We then show that when a noise filter is applied on input images, the API generates mostly the same outputs for restored images as for original images. This observation suggests that cloud vision API can readily benefit from noise filtering, without the need for updating image analysis algorithms

    Towards Robust Classification with Image Quality Assessment

    Full text link
    Recent studies have shown that deep convolutional neural networks (DCNN) are vulnerable to adversarial examples and sensitive to perceptual quality as well as the acquisition condition of images. These findings raise a big concern for the adoption of DCNN-based applications for critical tasks. In the literature, various defense strategies have been introduced to increase the robustness of DCNN, including re-training an entire model with benign noise injection, adversarial examples, or adding extra layers. In this paper, we investigate the connection between adversarial manipulation and image quality, subsequently propose a protective mechanism that doesnt require re-training a DCNN. Our method combines image quality assessment with knowledge distillation to detect input images that would trigger a DCCN to produce egregiously wrong results. Using the ResNet model trained on ImageNet as an example, we demonstrate that the detector can effectively identify poor quality and adversarial images.Comment: 11 pages, 7 figure
    corecore