13,499 research outputs found

    Multilevel Context Representation for Improving Object Recognition

    Full text link
    In this work, we propose the combined usage of low- and high-level blocks of convolutional neural networks (CNNs) for improving object recognition. While recent research focused on either propagating the context from all layers, e.g. ResNet, (including the very low-level layers) or having multiple loss layers (e.g. GoogLeNet), the importance of the features close to the higher layers is ignored. This paper postulates that the use of context closer to the high-level layers provides the scale and translation invariance and works better than using the top layer only. In particular, we extend AlexNet and GoogLeNet by additional connections in the top nn layers. In order to demonstrate the effectiveness of the proposed approach, we evaluated it on the standard ImageNet task. The relative reduction of the classification error is around 1-2% without affecting the computational cost. Furthermore, we show that this approach is orthogonal to typical test data augmentation techniques, as recently introduced by Szegedy et al. (leading to a runtime reduction of 144 during test time)

    Learning Visual Clothing Style with Heterogeneous Dyadic Co-occurrences

    Full text link
    With the rapid proliferation of smart mobile devices, users now take millions of photos every day. These include large numbers of clothing and accessory images. We would like to answer questions like `What outfit goes well with this pair of shoes?' To answer these types of questions, one has to go beyond learning visual similarity and learn a visual notion of compatibility across categories. In this paper, we propose a novel learning framework to help answer these types of questions. The main idea of this framework is to learn a feature transformation from images of items into a latent space that expresses compatibility. For the feature transformation, we use a Siamese Convolutional Neural Network (CNN) architecture, where training examples are pairs of items that are either compatible or incompatible. We model compatibility based on co-occurrence in large-scale user behavior data; in particular co-purchase data from Amazon.com. To learn cross-category fit, we introduce a strategic method to sample training data, where pairs of items are heterogeneous dyads, i.e., the two elements of a pair belong to different high-level categories. While this approach is applicable to a wide variety of settings, we focus on the representative problem of learning compatible clothing style. Our results indicate that the proposed framework is capable of learning semantic information about visual style and is able to generate outfits of clothes, with items from different categories, that go well together.Comment: ICCV 201

    'Part'ly first among equals: Semantic part-based benchmarking for state-of-the-art object recognition systems

    Full text link
    An examination of object recognition challenge leaderboards (ILSVRC, PASCAL-VOC) reveals that the top-performing classifiers typically exhibit small differences amongst themselves in terms of error rate/mAP. To better differentiate the top performers, additional criteria are required. Moreover, the (test) images, on which the performance scores are based, predominantly contain fully visible objects. Therefore, `harder' test images, mimicking the challenging conditions (e.g. occlusion) in which humans routinely recognize objects, need to be utilized for benchmarking. To address the concerns mentioned above, we make two contributions. First, we systematically vary the level of local object-part content, global detail and spatial context in images from PASCAL VOC 2010 to create a new benchmarking dataset dubbed PPSS-12. Second, we propose an object-part based benchmarking procedure which quantifies classifiers' robustness to a range of visibility and contextual settings. The benchmarking procedure relies on a semantic similarity measure that naturally addresses potential semantic granularity differences between the category labels in training and test datasets, thus eliminating manual mapping. We use our procedure on the PPSS-12 dataset to benchmark top-performing classifiers trained on the ILSVRC-2012 dataset. Our results show that the proposed benchmarking procedure enables additional differentiation among state-of-the-art object classifiers in terms of their ability to handle missing content and insufficient object detail. Given this capability for additional differentiation, our approach can potentially supplement existing benchmarking procedures used in object recognition challenge leaderboards.Comment: Extended version of our ACCV-2016 paper. Author formatting modifie
    corecore