125 research outputs found

    Channel Detection in Coded Communication

    Full text link
    We consider the problem of block-coded communication, where in each block, the channel law belongs to one of two disjoint sets. The decoder is aimed to decode only messages that have undergone a channel from one of the sets, and thus has to detect the set which contains the prevailing channel. We begin with the simplified case where each of the sets is a singleton. For any given code, we derive the optimum detection/decoding rule in the sense of the best trade-off among the probabilities of decoding error, false alarm, and misdetection, and also introduce sub-optimal detection/decoding rules which are simpler to implement. Then, various achievable bounds on the error exponents are derived, including the exact single-letter characterization of the random coding exponents for the optimal detector/decoder. We then extend the random coding analysis to general sets of channels, and show that there exists a universal detector/decoder which performs asymptotically as well as the optimal detector/decoder, when tuned to detect a channel from a specific pair of channels. The case of a pair of binary symmetric channels is discussed in detail.Comment: Submitted to IEEE Transactions on Information Theor

    Coding Theorems for Quantum Channels

    Get PDF
    The more than thirty years old issue of the (classical) information capacity of quantum communication channels was dramatically clarified during the last years, when a number of direct quantum coding theorems was discovered. The present paper gives a self contained treatment of the subject, following as much in parallel as possible with classical information theory and, on the other side, stressing profound differences of the quantum case. An emphasis is made on recent results, such as general quantum coding theorems including cases of infinite (possibly continuous) alphabets and constrained inputs, reliability function for pure state channels and quantum Gaussian channel. Several still unsolved problems are briefly outlined.Comment: 41 pages, Latex, eps figure. Extended version of report appeared in "Tamagawa University Research Review", no. 4, 199

    Lower Bounds on the Quantum Capacity and Highest Error Exponent of General Memoryless Channels

    Full text link
    Tradeoffs between the information rate and fidelity of quantum error-correcting codes are discussed. Quantum channels to be considered are those subject to independent errors and modeled as tensor products of copies of a general completely positive linear map, where the dimension of the underlying Hilbert space is a prime number. On such a quantum channel, the highest fidelity of a quantum error-correcting code of length nn and rate R is proven to be lower bounded by 1 - \exp [-n E(R) + o(n)] for some function E(R). The E(R) is positive below some threshold R', which implies R' is a lower bound on the quantum capacity. The result of this work applies to general discrete memoryless channels, including channel models derived from a physical law of time evolution, or from master equations.Comment: 19 pages, 2 figures. Ver.2: Comparisons with the previously known bounds and examples were added. Except for very noisy channels, this work's bound is, in general, better than those previously known. Ver.3: Introduction shortened. Minor change

    Lower bounds on the Probability of Error for Classical and Classical-Quantum Channels

    Full text link
    In this paper, lower bounds on error probability in coding for discrete classical and classical-quantum channels are studied. The contribution of the paper goes in two main directions: i) extending classical bounds of Shannon, Gallager and Berlekamp to classical-quantum channels, and ii) proposing a new framework for lower bounding the probability of error of channels with a zero-error capacity in the low rate region. The relation between these two problems is revealed by showing that Lov\'asz' bound on zero-error capacity emerges as a natural consequence of the sphere packing bound once we move to the more general context of classical-quantum channels. A variation of Lov\'asz' bound is then derived to lower bound the probability of error in the low rate region by means of auxiliary channels. As a result of this study, connections between the Lov\'asz theta function, the expurgated bound of Gallager, the cutoff rate of a classical channel and the sphere packing bound for classical-quantum channels are established.Comment: Updated to published version + bug fixed in Figure
    corecore