9,903 research outputs found

    Good Semi-supervised Learning that Requires a Bad GAN

    Full text link
    Semi-supervised learning methods based on generative adversarial networks (GANs) obtained strong empirical results, but it is not clear 1) how the discriminator benefits from joint training with a generator, and 2) why good semi-supervised classification performance and a good generator cannot be obtained at the same time. Theoretically, we show that given the discriminator objective, good semisupervised learning indeed requires a bad generator, and propose the definition of a preferred generator. Empirically, we derive a novel formulation based on our analysis that substantially improves over feature matching GANs, obtaining state-of-the-art results on multiple benchmark datasets.Comment: NIPS 2017 camera read

    Semi-supervised learning based on generative adversarial network: a comparison between good GAN and bad GAN approach

    Full text link
    Recently, semi-supervised learning methods based on generative adversarial networks (GANs) have received much attention. Among them, two distinct approaches have achieved competitive results on a variety of benchmark datasets. Bad GAN learns a classifier with unrealistic samples distributed on the complement of the support of the input data. Conversely, Triple GAN consists of a three-player game that tries to leverage good generated samples to boost classification results. In this paper, we perform a comprehensive comparison of these two approaches on different benchmark datasets. We demonstrate their different properties on image generation, and sensitivity to the amount of labeled data provided. By comprehensively comparing these two methods, we hope to shed light on the future of GAN-based semi-supervised learning.Comment: This paper appears at CVPR 2019 Weakly Supervised Learning for Real-World Computer Vision Applications (LID) Worksho

    Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning

    Full text link
    We address the problem of segmenting 3D multi-modal medical images in scenarios where very few labeled examples are available for training. Leveraging the recent success of adversarial learning for semi-supervised segmentation, we propose a novel method based on Generative Adversarial Networks (GANs) to train a segmentation model with both labeled and unlabeled images. The proposed method prevents over-fitting by learning to discriminate between true and fake patches obtained by a generator network. Our work extends current adversarial learning approaches, which focus on 2D single-modality images, to the more challenging context of 3D volumes of multiple modalities. The proposed method is evaluated on the problem of segmenting brain MRI from the iSEG-2017 and MRBrainS 2013 datasets. Significant performance improvement is reported, compared to state-of-art segmentation networks trained in a fully-supervised manner. In addition, our work presents a comprehensive analysis of different GAN architectures for semi-supervised segmentation, showing recent techniques like feature matching to yield a higher performance than conventional adversarial training approaches. Our code is publicly available at https://github.com/arnab39/FewShot_GAN-Unet3DComment: submitted to Medical Image Analysis for revie

    Manifold regularization with GANs for semi-supervised learning

    Full text link
    Generative Adversarial Networks are powerful generative models that are able to model the manifold of natural images. We leverage this property to perform manifold regularization by approximating a variant of the Laplacian norm using a Monte Carlo approximation that is easily computed with the GAN. When incorporated into the semi-supervised feature-matching GAN we achieve state-of-the-art results for GAN-based semi-supervised learning on CIFAR-10 and SVHN benchmarks, with a method that is significantly easier to implement than competing methods. We also find that manifold regularization improves the quality of generated images, and is affected by the quality of the GAN used to approximate the regularizer

    Semi-Supervised Learning with IPM-based GANs: an Empirical Study

    Full text link
    We present an empirical investigation of a recent class of Generative Adversarial Networks (GANs) using Integral Probability Metrics (IPM) and their performance for semi-supervised learning. IPM-based GANs like Wasserstein GAN, Fisher GAN and Sobolev GAN have desirable properties in terms of theoretical understanding, training stability, and a meaningful loss. In this work we investigate how the design of the critic (or discriminator) influences the performance in semi-supervised learning. We distill three key take-aways which are important for good SSL performance: (1) the K+1 formulation, (2) avoiding batch normalization in the critic and (3) avoiding gradient penalty constraints on the classification layer.Comment: Appeared at NIPS 2017 Workshop: Deep Learning: Bridging Theory and Practic

    Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification

    Full text link
    In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF) -based framework, which integrates a semi-supervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semi-supervised GANs to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semi-supervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semi-supervised HSI classification.Comment: Accepted by IEEE T-CY

    Semi-supervised Rare Disease Detection Using Generative Adversarial Network

    Full text link
    Rare diseases affect a relatively small number of people, which limits investment in research for treatments and cures. Developing an efficient method for rare disease detection is a crucial first step towards subsequent clinical research. In this paper, we present a semi-supervised learning framework for rare disease detection using generative adversarial networks. Our method takes advantage of the large amount of unlabeled data for disease detection and achieves the best results in terms of precision-recall score compared to baseline techniques.Comment: Machine Learning for Health (ML4H) Workshop at NeurIPS 2018 arXiv:1811.0721

    Triangle Generative Adversarial Networks

    Full text link
    A Triangle Generative Adversarial Network (Δ\Delta-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by only a few paired samples. Δ\Delta-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.Comment: To appear in NIPS 201

    Unsupervised and semi-supervised learning with Categorical Generative Adversarial Networks assisted by Wasserstein distance for dermoscopy image Classification

    Full text link
    Melanoma is a curable aggressive skin cancer if detected early. Typically, the diagnosis involves initial screening with subsequent biopsy and histopathological examination if necessary. Computer aided diagnosis offers an objective score that is independent of clinical experience and the potential to lower the workload of a dermatologist. In the recent past, success of deep learning algorithms in the field of general computer vision has motivated successful application of supervised deep learning methods in computer aided melanoma recognition. However, large quantities of labeled images are required to make further improvements on the supervised method. A good annotation generally requires clinical and histological confirmation, which requires significant effort. In an attempt to alleviate this constraint, we propose to use categorical generative adversarial network to automatically learn the feature representation of dermoscopy images in an unsupervised and semi-supervised manner. Thorough experiments on ISIC 2016 skin lesion chal- lenge demonstrate that the proposed feature learning method has achieved an average precision score of 0.424 with only 140 labeled images. Moreover, the proposed method is also capable of generating real-world like dermoscopy images

    Sobolev GAN

    Full text link
    We propose a new Integral Probability Metric (IPM) between distributions: the Sobolev IPM. The Sobolev IPM compares the mean discrepancy of two distributions for functions (critic) restricted to a Sobolev ball defined with respect to a dominant measure μ\mu. We show that the Sobolev IPM compares two distributions in high dimensions based on weighted conditional Cumulative Distribution Functions (CDF) of each coordinate on a leave one out basis. The Dominant measure μ\mu plays a crucial role as it defines the support on which conditional CDFs are compared. Sobolev IPM can be seen as an extension of the one dimensional Von-Mises Cram\'er statistics to high dimensional distributions. We show how Sobolev IPM can be used to train Generative Adversarial Networks (GANs). We then exploit the intrinsic conditioning implied by Sobolev IPM in text generation. Finally we show that a variant of Sobolev GAN achieves competitive results in semi-supervised learning on CIFAR-10, thanks to the smoothness enforced on the critic by Sobolev GAN which relates to Laplacian regularization
    • …
    corecore