2 research outputs found

    Adversarial Spatio-Temporal Learning for Video Deblurring

    Full text link
    Camera shake or target movement often leads to undesired blur effects in videos captured by a hand-held camera. Despite significant efforts having been devoted to video-deblur research, two major challenges remain: 1) how to model the spatio-temporal characteristics across both the spatial domain (i.e., image plane) and temporal domain (i.e., neighboring frames), and 2) how to restore sharp image details w.r.t. the conventionally adopted metric of pixel-wise errors. In this paper, to address the first challenge, we propose a DeBLuRring Network (DBLRNet) for spatial-temporal learning by applying a modified 3D convolution to both spatial and temporal domains. Our DBLRNet is able to capture jointly spatial and temporal information encoded in neighboring frames, which directly contributes to improved video deblur performance. To tackle the second challenge, we leverage the developed DBLRNet as a generator in the GAN (generative adversarial network) architecture, and employ a content loss in addition to an adversarial loss for efficient adversarial training. The developed network, which we name as DeBLuRring Generative Adversarial Network (DBLRGAN), is tested on two standard benchmarks and achieves the state-of-the-art performance.Comment: To appear in IEEE Transactions on Image Processing (TIP

    Image Stitching and Rectification for Hand-Held Cameras

    Full text link
    In this paper, we derive a new differential homography that can account for the scanline-varying camera poses in Rolling Shutter (RS) cameras, and demonstrate its application to carry out RS-aware image stitching and rectification at one stroke. Despite the high complexity of RS geometry, we focus in this paper on a special yet common input -- two consecutive frames from a video stream, wherein the inter-frame motion is restricted from being arbitrarily large. This allows us to adopt simpler differential motion model, leading to a straightforward and practical minimal solver. To deal with non-planar scene and camera parallax in stitching, we further propose an RS-aware spatially-varying homography field in the principle of As-Projective-As-Possible (APAP). We show superior performance over state-of-the-art methods both in RS image stitching and rectification, especially for images captured by hand-held shaking cameras.Comment: ECCV 2020. Project web: https://www.nec-labs.com/~mas/RS-APA
    corecore