31,813 research outputs found

    Chemical weathering and provenance evolution of Holocene–Recent sediments from the Western Indus Shelf, Northern Arabian Sea inferred from physical and mineralogical properties

    Get PDF
    We present a multi-proxy mineral record based on X-ray diffraction and diffuse reflectance spectrophotometry analysis for two cores from the western Indus Shelf in order to reconstruct changing weathering intensities, sediment transport, and provenance variations since 13 ka. Core Indus-10 is located northwest of the Indus Canyon and exhibits fluctuations in smectite/(illite + chlorite) ratios that correlate with monsoon intensity. Higher smectite/(illite + chlorite) and lower illite crystallinity, normally associated with stronger weathering, peaked during the Early–Mid Holocene, the period of maximum summer monsoon. Hematite/goethite and magnetic susceptibility do not show clear co-variation, although they both increase at Indus-10 after 10 ka, as the monsoon weakened. At Indus-23, located on a clinoform just west of the canyon, hematite/goethite increased during a period of monsoon strengthening from 10 to 8 ka, consistent with increased seasonality and/or reworking of sediment deposited prior to or during the glacial maximum. After 2 ka terrigenous sediment accumulation rates in both cores increased together with redness and hematite/goethite, which we attribute to widespread cultivation of the floodplain triggering reworking, especially after 200 years ago. Over Holocene timescales sediment composition and mineralogy in two localities on the high-energy shelf were controlled by varying degrees of reworking, as well as climatically modulated chemical weathering

    Hybrid Nanocomposites with Tunable Alignment of the Magnetic Nanorod Filler

    Full text link
    For many important applications, the performance of polymer-anisotropic particle nanocomposite materials strongly depends on the orientation of the nanoparticles. Using the very peculiar magnetic properties of goethite ({\alpha}-FeOOH) nanorods, we produced goethite-poly(hydroxyethyl methacrylate) nanocomposites in which the alignment direction and the level of orientation of the nanorods could easily be tuned by simply adjusting the intensity of a magnetic field applied during polymerization. Because the particle volume fraction was kept low (1-5.5 vol \%), we used the orientational order induced by the field in the isotropic phase rather than the spontaneous orientational order of the nematic phase. At the strongest field values (up to 1.5 T), the particles exhibit almost perfect antinematic alignment, as measured by optical birefringence and small-angle X-ray scattering. The results of these two techniques are in remarkably good agreement, validating the use of birefringence measurements for quantifying the degree of orientational order. We also demonstrate that the ordering induced by the field in the isotropic suspension is preserved in the final material after field removal. This work illustrates the interest, for such problems, of considering the field-induced alignment of anisotropic nanoparticles in the isotropic phase, an approach that is effective at low filler content, that avoids the need of controlling the nematic texture, and that allows tuning of the orientation level of the particles at will simply by adjusting the field intensity

    Early diagenetic vivianite [Fe-3(PO4)(2) center dot 8H(2)O] in a contaminated freshwater sediment and insights into zinc uptake: a mu-EXAFS, mu-XANES and Raman study

    Get PDF
    The sediments in the Salford Quays, a heavily-modified urban water body, contain high levels of organic matter, Fe, Zn and nutrients as a result of past contaminant inputs. Vivianite [Fe3(PO4)2 · 8H2O] has been observed to have precipitated within these sediments during early diagenesis as a result of the release of Fe and P to porewaters. These mineral grains are small (<100 μm) and micron-scale analysis techniques (SEM, electron microprobe, μ-EXAFS, μ-XANES and Raman) have been applied in this study to obtain information upon the structure of this vivianite and the nature of Zn uptake in the mineral. Petrographic observations, and elemental, X-ray diffraction and Raman spectroscopic analysis confirms the presence of vivianite. EXAFS model fitting of the FeK-edge spectra for individual vivianite grains produces Fe–O and Fe–P co-ordination numbers and bond lengths consistent with previous structural studies of vivianite (4O atoms at 1.99–2.05 Å; 2P atoms at 3.17–3.25 Å). One analysed grain displays evidence of a significant Fe3+ component, which is interpreted to have resulted from oxidation during sample handling and/or analysis. EXAFS modelling of the Zn K-edge data, together with linear combination XANES fitting of model compounds, indicates that Zn may be incorporated into the crystal structure of vivianite (4O atoms at 1.97 Å; 2P atoms at 3.17 Å). Low levels of Zn sulphate or Zn-sorbed goethite are also indicated from linear combination XANES fitting and to a limited extent, the EXAFS fitting, the origin of which may either be an oxidation artifact or the inclusion of Zn sulphate into the vivianite grains during precipitation. This study confirms that early diagenetic vivianite may act as a sink for Zn, and potentially other contaminants (e.g. As) during its formation and, therefore, forms an important component of metal cycling in contaminated sediments and waters. Furthermore, for the case of Zn, the EXAFS fits for Zn phosphate suggest this uptake is structural and not via surface adsorption

    Synthetic and natural iron oxide characterization through microparticle voltammetry

    Get PDF
    Se presentan los resultados de un estudio sobre el uso de la Voltametría de Micropartículas (VMP), aplicada a la identificación de óxidos y oxihidróxidos de hierro. Mediante esta técnica, fue posible diferenciar hematita, goethita, magnetita y maghemita, en muestras sintéticas y naturales. La medición de pigmentos sintéticos tratados a diferentes temperaturas, evidenció la existencia de un patrón de comportamiento que permite diferenciarlos. Se constató que la ubicación del pico de corriente (valor de potencial), varía en función de la especie mineral, el tamaño de grano y el grado de cristalinidad, el área, en relación con la concentración de especie electroactiva y el ancho, con la distribución de tamaños de partícula. En muestras con elevadas concentraciones de óxidos y oxihidróxidos de hierro, los picos se definieron a corrientes del orden de los mA (miliamperes) y en muestras de paleosuelos con un contenido de hierro total inferior al 6%, los picos se registraron a corrientes del orden de los µA (microamperes). De esta manera, se constata la posibilidad de aplicación de la técnica en estudios ambientales y paleoambientales que tengan en cuenta a estos minerales. Las principales ventajas de la VMP, respecto a los métodos convencionales, se refieren a la rapidez y simplicidad de aplicación y a la posibilidad de procesar pocos microgramos de muestra, sin limitación de su grado de cristalinidad. A diferencia de los métodos magnéticos, fuertemente condicionados por la presencia de magnetita, la VMP resulta altamente sensible a la detección de especies débilmente magnéticas.We are hereby presenting the results obtained from a study on using Microparticle Voltammetry (MPV) for identifying Iron oxides and oxy–hydroxides. This technique allowed us to distinguish different mineral species, such as hematite, goethite, magnetite and maghemite, in both synthetic and natural samples. By measuring synthetic pigments at different temperatures, evidence was found of an electrochemical behavioral pattern which allowed differenciating them. The current peak location (potential value) proved to vary according to the mineral species, grain size and chrystallinity degree. The area varies in terms of electroactive concentration of the species given. Width varies according to particle size distribution. In high iron oxide and oxy–hydroxide concentration samples, peaks were defined at current values of mA (milliampers) and in paleosol samples having an overall iron content lower than 6%, peaks were recorded at currents of µA (microampers). Therefore, a possibility arises of applying this technique to environmental and palaeo–environmental studies of these minerals. MPVs main advantages compared to conventional methods are speed and simplicity as well as the fact that it allows processing a few sample grains, in spite of its chrystallinity degree. Unlike magnetic methods – strongly influenced by the presence of magnetite– MPV is highly sensitive for detecting weakly magnetic species.Fil: Rico, Yamile. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica; ArgentinaFil: Bidegain, Juan Carlos. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Laboratorio de Entrenamiento Multidisciplinario para la Investigación Tecnológica; ArgentinaFil: Elsner, Cecilia Ines. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones en Tecnología de Pinturas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones en Tecnología de Pinturas; Argentin

    Kinetic study of goethite dehydration and the effect of aluminium substitution on the dehydrate

    Get PDF
    Goethite and Al-substituted goethite were synthesized and were characterized using XRD and XRF. The kinetic study of goethite dehydrate was investigated by TG and DTG at different heating rates (2, 5, 10, 15, 20 ◦C/min) and the effect of Al substitution for Fe on dehydrate was studied. The results showed that two types of absorbed water with the same Ed values of 3.4, 6.2 kJ/mol were confirmed on goethite and Alsubstituted goethite. Three types of hydroxyl units were proved, one being on the surface and the other two being in the structure of goethite. The substitution of Al for Fe in the structure of goethite decreases the desorption rate of hydroxyl, increases the dehydroxylation temperature, broadens the desorption peaks in DTG curves, and improves the Ed values from 19.4, 20.4, 26.1 kJ/mol to 21.6, 30, 33.6 kJ/mol when Al substitution comes to 9.1%

    Modeling the iron oxides and oxyhydroxides for the prediction of environmentally sensitive phase transformations

    Full text link
    Iron oxides and oxyhydroxides are challenging to model computationally as competing phases may differ in formation energies by only several kJ/mol, they undergo magnetization transitions with temperature, their structures may contain partially occupied sites or long-range ordering of vacancies, and some loose structures require proper description of weak interactions such as hydrogen bonding and dispersive forces. If structures and transformations are to be reliably predicted under different chemical conditions, each of these challenges must be overcome simultaneously, while preserving a high level of numerical accuracy and physical sophistication. Here we present comparative studies of structure, magnetization, and elasticity properties of iron oxides and oxyhydroxides using density functional theory calculations with plane-wave and locally-confined-atomic-orbital basis sets, which are implemented in VASP and SIESTA packages, respectively. We have selected hematite, maghemite, goethite, lepidocrocite, and magnetite as model systems from a total of 13 known iron oxides and oxyhydroxides; and use same convergence criteria and almost equivalent settings in order to make consistent comparisons. Our results show both basis sets can reproduce the energetic stability and magnetic ordering, and are in agreement with experimental observations. There are advantages to choosing one basis set over the other, depending on the intended focus. In our case, we find the method using PW basis set most appropriate, and combine our results to construct the first phase diagram of iron oxides and oxyhydroxides in the space of competing chemical potentials, generated entirely from first principlesComment: 46 pages - Accepted for publication in PRB (19 journal pages), January 201

    Insights into secondary reactions occurring during atmospheric ablation of micrometeoroids

    Get PDF
    Ablation of micrometeoroids during atmospheric entry yields volatile gases such as water, carbon dioxide, and sulfur dioxide, capable of altering atmospheric chemistry and hence the climate and habitability of the planetary surface. While laboratory experiments have revealed the yields of these gases during laboratory simulations of ablation, the reactions responsible for the generation of these gases have remained unclear, with a typical assumption being that species simply undergo thermal decomposition without engaging in more complex chemistry. Here, pyrolysis–Fourier transform infrared spectroscopy reveals that mixtures of meteorite-relevant materials undergo secondary reactions during simulated ablation, with organic matter capable of taking part in carbothermic reduction of iron oxides and sulfates, resulting in yields of volatile gases that differ from those predicted by simple thermal decomposition. Sulfates are most susceptible to carbothermic reduction, producing greater yields of sulfur dioxide and carbon dioxide at lower temperatures than would be expected from simple thermal decomposition, even when mixed with meteoritically relevant abundances of low-reactivity Type IV kerogen. Iron oxides were less susceptible, with elevated yields of water, carbon dioxide, and carbon monoxide only occurring when mixed with high abundances of more reactive Type III kerogen. We use these insights to reinterpret previous ablation simulation experiments and to predict the reactions capable of occurring during ablation of carbonaceous micrometeoroids in atmospheres of different compositions
    corecore