128,913 research outputs found

    The conversion of L-histidine to glutamic acid by liver enzymes

    Get PDF
    Edlbacher and Neber (1) showed in 1934 that the liver enzyme named histidase degrades histidine to NH3, formic acid, and an unknown product which on further treatment with strong alkali yields glutamic acid. This led to the suggestion that glutamic acid is a metabolic product of histidine, a suggestion that was supported by the finding that glycogen was formed from histidine about as well as from glutamic acid (2). These findings did not prove that glutamic acid was one of the products of histidine metabolism, and the idea became questionable when the evidence from subsequent investigations with non-isotopic histidine (3), imidazole-N16-histidine (4), and carboxyl-C14-histidine (5) were negative or inconclusive. In studies on the fate of carboxyl-C14-L-histidine in the liver of rabbits after injection and after incubation with guinea pig liver slices, we have found direct evidence that glutamic acid is a major product of histdine metabolism. Another highly radioactive compound was isolated by ion exchange chromatography, whose properties with respect to chromatography and lability to alkali and acid appear to correspond to those reported for isoglutamine. Takeuchi (6) isolated and identified isoglutamine as a product of the action of urocanicase on urocanic acid, which was obtained by the action of another liver enzyme on histidine. The formation of isoglutamine as an intermediate is consistent with our finding that the label in the radioactive glutamic acid formed from carboxyl-C14-histidine is not in the α-carboxyl group, and the inference is very strong that the label is in the γ-carboxyl group

    Regulatory effects of blood constituents on the function and metabolism of the cat brain in perfusion ezperiments. Brain perfusion with artificial blood containing low molecular dextran and amino acids

    Get PDF
    As a link in a series of studies on the effects of blood constituents on the brain function by means of brain perfusion, we used four kinds of artificial blood; namely, the blood containing a low molecular dextran, one containing glutamic acid, one containing essential amino acid group and the one containing both essential amino acid group and glutamic acid. During the perfusion experiments we observed the effects of blood constituents on the function and metabolism of the perfused brain and obtained the following results. 1. When a low molecular dextran is used as the colloid osmotic pressure agent instead of hydrodextran, the amount of the blood flow in the brain is maintained roughly at a certain fixed level throughout the experiment, showing no gradual decreasing tendency. 2. When using the artificial blood supplemented with glutamic acid, EEG of the perfused brain shows an increase in the appearance rate of &#946;32 and &#946;33 bands, approaching closely to the pattern of EEG of unrestrained controls at arousal state. 3. In the case of the blood added with essential amino acids similar to the case using the blood with glutamic acid, EEG approaches towards the alert pattern of the controls. 4. When the perfusion is done with the artificial blood lacking in amino acids, about one hour after the start of the perfusion the amount of glutamic acid and its related compounds in the brain can no longer be maintained at normal level and the decrease, being so marked, brings about a marked decrease also in total amino acid content. 5. When the perfusion blood contains glutamic acid, essential amino acid group or both, the concentrations of amino acids of the brain glutamic acid group and the total amino acid can be maintained approximately at normal level for the duration of over one hour.</p

    Effect of charged lipids on the ionization behavior of glutamic acid containing transmembrane helices

    Get PDF
    Transmembrane proteins make up critical components of living cells. Protein function can be greatly impacted by the charged state of its respective components, the side chains of amino acid residues. Thus far, in the lipid membrane, little is known about the properties of residues such as glutamic acid. To explore these properties, I have included glutamic acid in a suitable model peptide-lipid system for fundamental biophysical experiments. Within the system, I have placed a glutamic acid residue instead of leucine in the L14 position of the helical hydrophobic peptide GWALP23 (acetyl-GGALWLALALALAL14ALALWLAGA-amide). Substitutions of glutamine and aspartic acid serve as controls for the properties of the peptide helix in lipid bilayer membranes. The GWALP23 peptide derivatives are placed in various lipid bilayer environments. Specifically, I investigated the impact of glutamic acid (position E14) when differently charged lipids are present in the bilayer. The underlying importance is to understand the charged or neutral state behavior of glutamic acid under conditions where it is important for the functioning of several types of membrane proteins, such as ion channels, drug transporters and others. For the experimental plan, core alanine resides of GWALP23 were labeled with deuterium to enable detection of helix characteristics by solid-state 2H NMR spectroscopy. The peptide-lipid samples included primarily the neutral lipid DMPC, 1,2-dimyristoylphosphatidylcholine, (with 14-carbon acyl chains), along with 10% of a charged lipid. For each membrane system, I confirmed lipid bilayer formation for the particular peptide-lipid mixture by solid-state 31P NMR. The charged lipids consisted of the negatively charged lipid DMPG, 1,2-dimyristoylphosphatidylglycerol, and the positively charged lipid DMTAP, 1,2-dimyristoyl-3-trimethylammonium-propane. These charged lipids were found to influence the properties of the GWALP23 helix when E14 was present. DMTAP, in particular, improves the 2H NMR spectra and the prospects for characterizing helix dynamics when a glutamic acid residue is present. While some experiments were cut short due to a global emergency, the results show promise for characterizing glutamic acid in model helices and actual membrane proteins

    Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies

    Get PDF
    Pathways of ammonia assimilation into glutamic acid and alanine in Bacillus polymyxa were investigated by 15N NMR spectroscopy in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthetase, alanine dehydrogenase, and glutamic-alanine transaminase. Ammonia was found to be assimilated into glutamic acid predominantly by NADPH-dependent glutamate dehydrogenase with a Km of 2.9 mM for NH4+ not only in ammonia-grown cells but also in nitrate-grown and nitrogen-fixing cells in which the intracellular NH4+ concentrations were 11.2, 1.04, and 1.5 mM, respectively. In ammonia-grown cells, the specific activity of alanine dehydrogenase was higher than that of glutamic-alanine transaminase, but the glutamate dehydrogenase/glutamic-alanine transaminase pathway was found to be the major pathway of 15NH4+ assimilation into [15N]alanine. The in vitro specific activities of glutamate dehydrogenase and glutamine synthetase, which represent the rates of synthesis of glutamic acid and glutamine, respectively, in the presence of enzyme-saturating concentrations of substrates and coenzymes are compared with the in vivo rates of biosynthesis of [15N]glutamic acid and [alpha,gamma-15N]glutamine observed by NMR, and implications of the results for factors limiting the rates of their biosynthesis in ammonia- and nitrate-grown cells are discussed

    Glutamic acid metabolism in perfused cat brain studied with 14C-labelled glutamic acid

    Get PDF
    The rate of transport of blood glutamic acid into the brain and the rate of metabolic conversion of the amino acid in the brain were derived by the use of the brain perfution method in vivo and in situ with [D.HC] ·Lglutamic acid. The net uptake of glutamic acid by the brain was observed. Most of the radioactivity released from the brain into the cerebral venous blood was found to consist of glutamine. Small but significant amounts of output as radioactive GSH and CO2 were also found. Glutamic acid transport and its rate of metabolism were lowered in the glucose. free condition. The size of the compartment of the small glutamic acid pool, which was related closely to the blood glutamic acid, and that of the large glutamic acid pool, which was related closely to the blood glucose, were calculated and compared with each other.</p

    Poly-(γ-glutamic acid) Production and Optimization from Agro-Industrial Bioresources as Renewable Substrates by Bacillus sp. FBL-2 through Response Surface Methodology

    Get PDF
    We optimized culture conditions using Bacillus sp. FBL-2 as a poly-(γ-glutamic acid) (PGA) producing strain isolated from cheonggukjang. All experiments were performed under aerobic conditions using a laboratory scale 2.5 L fermentor. We investigated the effects of fermentation parameters (temperature, pH, agitation, and aeration) and medium components (glutamic acid, citric acid, and yeast extract) on poly-(γ-glutamic acid) production, viscosity, and dry cell mass. A non-optimized fermentation method (1.5 vvm, 350 rpm, and 37 °C) yielded PGA, viscosity, and dry cell mass at levels of 100.7 g/L, 483.2 cP, and 3.4 g/L, respectively. L-glutamic acid, citric acid, and yeast extract supplementation enhanced poly-(γ-glutamic acid) production to 175.9 g/L. Additionally, the production of poly-(γ-glutamic acid) from rice bran and wheat bran was assessed using response surface methodology (central composite rotatable design). Agricultural by-products (rice bran and wheat bran) and H2SO4 were selected as factors, and experiments were performed by combining various component concentrations to determine optimal component concentrations. Our experimentally-derived optimal parameters included 38.6 g/L of rice bran, 0.42% of H2SO4, 28.0 g/L of wheat bran, and 0.32% of H2SO4. Under optimum conditions, rice bran medium facilitated poly-(γ-glutamic acid) production of up to 22.64 g/L, and the use of wheat bran medium yielded up to 14.6 g/L. Based on a validity test using the optimized culture conditions, poly-(γ-glutamic acid) was produced at 47.6 g/L and 36.4 g/L from these respective mediums, and both results were higher than statistically predicted. This study suggests that rice bran can be used as a potential alternative substrate for poly-(γ-glutamic acid) production

    Effect of pre-germination time on amino acid profile and Gamma Amino Buytric Acid (GABA) contents in different varieties of Malaysian brown rice.

    Get PDF
    Eighteen varieties of Malaysian brown rice were evaluated for their crude protein, total glutamic acid, and gamma amino butyric acid contents after pre-germination at different times. The crude protein and total glutamic acid content increased significantly in all the varieties after pre-germination. Gamma amino butyric acid content increased dramatically with time during the pre-germination process. A significant (p < 0.05) positive correlation was observed between protein, glutamic acid, and gamma amino butyric acid contents before and after pre-germination. The brown rice varieties containing higher glutamic acid and/or protein content before the pre-germination process provided more gamma amino butyric acid content during pre-germination

    Biosynthesis of Glutamic Acid

    Get PDF
    An unknown microorganism was isolated from the soil by using defined selective medium. It could synthesize glutamic acid from glucose and urea. When subjected to repeated ultra-violet light and X-ray irradiations, and after process of screening, the organism had increased the yield of glutamic acid biosynthesis up to 10 mgm per ml of broth. The pathway of glutamic acid biosynthesis is unknown. Evidence indicated that the TCA cycle was probably not involved. The microorganism could be a new species of Micrococcus

    Effect of the nitrogen source on glutamine and alanine biosynthesis in Neurospora crassa. An in vivo 15N nuclear magnetic resonance study

    Get PDF
    The influences of different nitrogen sources on the relative rates of biosynthesis of glutamine and alanine have been studied by 15N nuclear magnetic resonance spectroscopy of intact Neurospora crassa mycelia suspensions. The rate of glutamine synthesis was fastest after growth in media deficient in free ammonium ion, whereas it was slowest following growth in media containing both glutamic acid and glutamine. The reverse trend was observed for the biosynthesis of alanine. A competition between the two biosynthetic pathways for the same substrate, glutamic acid, was found to limit the rate of alanine synthesis when glutamine synthesis was rapid. The observed in vivo rates of these reactions are compared to the reported specific activities of the enzymes catalyzing the reactions, and implications of these results for nitrogen regulation of these pathways under various physiological conditions are discussed

    Synthesis and properties of lipoamino acid/fatty acid mixtures. Influence of the amphiphilic structure.

    Get PDF
    The acylation of amino acids by acid chlorides with from 8 to 12 carbon atoms, in alkaline aqueous medium following Shotten-Baumann reaction, results in sodium salts of Nα-acylamino acids and fatty acids mixture. These lastest are present in proportion from 40 to 60%. These compositions represent mixtures of amphiphilic anionic surfactants. They contribute together to the properties of the formulation. Measurements of the surface-active properties of these formulations, such as critical micelle concentration (CMC), surface tension at the CMC (TS), foaming capacity (FC) and foaming stability (FS), show that surfactant mixtures with the longest chain have the most desirable properties. They are comparable to commercial petroleum-based surfactants. Thus, the CMC, TS and CM values of the formulation obtained starting from leucine and dodecanoyl chloride (310 mg/L, 30.1 mN/m and 200%, respectively) are similar, even better than, sodium dodecylsulfate (290 mg/L, 39.1 mN/m and 230%, respectively
    corecore