305 research outputs found

    Estimation of glottal closure instants in voiced speech using the DYPSA algorithm

    Get PDF
    Published versio

    Extraction of vocal-tract system characteristics from speechsignals

    Get PDF
    We propose methods to track natural variations in the characteristics of the vocal-tract system from speech signals. We are especially interested in the cases where these characteristics vary over time, as happens in dynamic sounds such as consonant-vowel transitions. We show that the selection of appropriate analysis segments is crucial in these methods, and we propose a selection based on estimated instants of significant excitation. These instants are obtained by a method based on the average group-delay property of minimum-phase signals. In voiced speech, they correspond to the instants of glottal closure. The vocal-tract system is characterized by its formant parameters, which are extracted from the analysis segments. Because the segments are always at the same relative position in each pitch period, in voiced speech the extracted formants are consistent across successive pitch periods. We demonstrate the results of the analysis for several difficult cases of speech signals

    A quantitative assessment of group delay methods for identifying glottal closures in voiced speech

    No full text
    Published versio

    Glottal-synchronous speech processing

    No full text
    Glottal-synchronous speech processing is a field of speech science where the pseudoperiodicity of voiced speech is exploited. Traditionally, speech processing involves segmenting and processing short speech frames of predefined length; this may fail to exploit the inherent periodic structure of voiced speech which glottal-synchronous speech frames have the potential to harness. Glottal-synchronous frames are often derived from the glottal closure instants (GCIs) and glottal opening instants (GOIs). The SIGMA algorithm was developed for the detection of GCIs and GOIs from the Electroglottograph signal with a measured accuracy of up to 99.59%. For GCI and GOI detection from speech signals, the YAGA algorithm provides a measured accuracy of up to 99.84%. Multichannel speech-based approaches are shown to be more robust to reverberation than single-channel algorithms. The GCIs are applied to real-world applications including speech dereverberation, where SNR is improved by up to 5 dB, and to prosodic manipulation where the importance of voicing detection in glottal-synchronous algorithms is demonstrated by subjective testing. The GCIs are further exploited in a new area of data-driven speech modelling, providing new insights into speech production and a set of tools to aid deployment into real-world applications. The technique is shown to be applicable in areas of speech coding, identification and artificial bandwidth extension of telephone speec

    COMPARING ACOUSTIC GLOTTAL FEATURE EXTRACTION METHODS WITH SIMULTANEOUSLY RECORDED HIGH-SPEED VIDEO FEATURES FOR CLINICALLY OBTAINED DATA

    Get PDF
    Accurate methods for glottal feature extraction include the use of high-speed video imaging (HSVI). There have been previous attempts to extract these features with the acoustic recording. However, none of these methods compare their results with an objective method, such as HSVI. This thesis tests these acoustic methods against a large diverse population of 46 subjects. Two previously studied acoustic methods, as well as one introduced in this thesis, were compared against two video methods, area and displacement for open quotient (OQ) estimation. The area comparison proved to be somewhat ambiguous and challenging due to thresholding effects. The displacement comparison, which is based on glottal edge tracking, proved to be a more robust comparison method than the area. The first acoustic methods OQ estimate had a relatively small average error of 8.90% and the second method had a relatively large average error of -59.05% compared to the displacement OQ. The newly proposed method had a relatively small error of -13.75% when compared to the displacements OQ. There was some success even though there was relatively high error with the acoustic methods, however, they may be utilized to augment the features collected by HSVI for a more accurate glottal feature estimation
    corecore