516 research outputs found

    Rigid ball-polyhedra in Euclidean 3-space

    Full text link
    A ball-polyhedron is the intersection with non-empty interior of finitely many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a ball-polyhedron as the union of vertices, edges, and faces defined in a rather natural way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly three edges meet. Moreover, a ball-polyhedron is called a standard ball-polyhedron if its vertex-edge-face structure is a lattice (with respect to containment). To each edge of a ball-polyhedron one can assign an inner dihedral angle and say that the given ball-polyhedron is locally rigid with respect to its inner dihedral angles if the vertex-edge-face structure of the ball-polyhedron and its inner dihedral angles determine the ball-polyhedron up to congruence locally. The main result of this paper is a Cauchy-type rigidity theorem for ball-polyhedra stating that any simple and standard ball-polyhedron is locally rigid with respect to its inner dihedral angles.Comment: 11 pages, 2 figure

    Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces

    Get PDF
    A Fuchsian polyhedron in hyperbolic space is a polyhedral surface invariant under the action of a Fuchsian group of isometries (i.e. a group of isometries leaving globally invariant a totally geodesic surface, on which it acts cocompactly). The induced metric on a convex Fuchsian polyhedron is isometric to a hyperbolic metric with conical singularities of positive singular curvature on a compact surface of genus greater than one. We prove that these metrics are actually realised by exactly one convex Fuchsian polyhedron (up to global isometries). This extends a famous theorem of A.D. Alexandrov.Comment: Some little corrections from the preceding version. To appear in Les Annales de l'Institut Fourie

    Existence and uniqueness theorem for convex polyhedral metrics on compact surfaces

    Full text link
    We state that any constant curvature Riemannian metric with conical singularities of constant sign curvature on a compact (orientable) surface SS can be realized as a convex polyhedron in a Riemannian or Lorentzian) space-form. Moreover such a polyhedron is unique, up to global isometries, among convex polyhedra invariant under isometries acting on a totally umbilical surface. This general statement falls apart into 10 different cases. The cases when SS is the sphere are classical.Comment: Survey paper. No proof. 10 page

    Fuchsian polyhedra in Lorentzian space-forms

    Full text link
    Let S be a compact surface of genus >1, and g be a metric on S of constant curvature K\in\{-1,0,1\} with conical singularities of negative singular curvature. When K=1 we add the condition that the lengths of the contractible geodesics are >2\pi. We prove that there exists a convex polyhedral surface P in the Lorentzian space-form of curvature K and a group G of isometries of this space such that the induced metric on the quotient P/G is isometric to (S,g). Moreover, the pair (P,G) is unique (up to global isometries) among a particular class of convex polyhedra, namely Fuchsian polyhedra. This extends theorems of A.D. Alexandrov and Rivin--Hodgson concerning the sphere to the higher genus cases, and it is also the polyhedral version of a theorem of Labourie--Schlenker
    • …
    corecore