16 research outputs found

    Inference by Learning: Speeding-up Graphical Model Optimization via a Coarse-to-Fine Cascade of Pruning Classifiers

    Get PDF
    We propose a general and versatile framework that significantly speeds-up graphical model optimization while maintaining an excellent solution accuracy. The proposed approach, refereed as Inference by Learning or in short as IbyL, relies on a multi-scale pruning scheme that progressively reduces the solution space by use of a coarse-to-fine cascade of learnt classifiers. We thoroughly experiment with classic computer vision related MRF problems, where our novel framework constantly yields a significant time speed-up (with respect to the most efficient inference methods) and obtains a more accurate solution than directly optimizing the MRF. We make our code available on-line [4]

    Depth Map Estimation and Colorization of Anaglyph Images Using Local Color Prior and Reverse Intensity Distribution

    Get PDF
    In this paper, we present a joint iterative anaglyph stereo matching and colorization framework for obtaining a set of disparity maps and colorized images. Conventional stereo matching algorithms fail when addressing anaglyph images that do not have similar intensities on their two respective view images. To resolve this problem, we propose two novel data costs using local color prior and reverse intensity distribution factor for obtaining accurate depth maps. To colorize an anaglyph image, each pixel in one view is warped to another view using the obtained disparity values of non-occluded regions. A colorization algorithm using optimization is then employed with additional constraint to colorize the remaining occluded regions. Experimental results confirm that the proposed unified framework is robust and produces accurate depth maps and colorized stereo images.National Research Foundation of Korea (Basic Science Research Program (Ministry of Education, NRF-2012R1A1A2009495))National Research Foundation of Korea (Korea government (MSIP), grant No. NRF-2013R1A2A2A01069181

    A discriminative view of MRF pre-processing algorithms

    Full text link
    While Markov Random Fields (MRFs) are widely used in computer vision, they present a quite challenging inference problem. MRF inference can be accelerated by pre-processing techniques like Dead End Elimination (DEE) or QPBO-based approaches which compute the optimal labeling of a subset of variables. These techniques are guaranteed to never wrongly label a variable but they often leave a large number of variables unlabeled. We address this shortcoming by interpreting pre-processing as a classification problem, which allows us to trade off false positives (i.e., giving a variable an incorrect label) versus false negatives (i.e., failing to label a variable). We describe an efficient discriminative rule that finds optimal solutions for a subset of variables. Our technique provides both per-instance and worst-case guarantees concerning the quality of the solution. Empirical studies were conducted over several benchmark datasets. We obtain a speedup factor of 2 to 12 over expansion moves without preprocessing, and on difficult non-submodular energy functions produce slightly lower energy.Comment: ICCV 201

    Efficiently solving convex relaxations for MAP estimation

    Full text link

    Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation

    No full text

    Globally optimal solutions for energy minimization in stereo vision using reweighted belief propagation

    No full text
    Abstract A wide range of low level vision problems have been for-mulated in terms of finding the most probable assignment of a Markov Random Field (or equivalently the lowest en-ergy configuration). Perhaps the most successful example is stereo vision. For the stereo problem, it has been shown thatfinding the global optimum is NP hard but good results have been obtained using a number of approximate optimizationalgorithms
    corecore