2,151 research outputs found

    Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

    Full text link
    Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d2d\geq 2 and in all of space for d3d\geq 3, the uniqueness being a result previously not known for PKS with degenerate diffusion. We generalize the notion of criticality for PKS and show that subcritical problems are globally well-posed. For a fairly general class of problems, we prove the existence of a critical mass which sharply divides the possibility of finite time blow up and global existence. Moreover, we compute the critical mass for fully general problems and show that solutions with smaller mass exists globally. For a class of supercritical problems we prove finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page

    Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition

    Full text link
    In the stability analysis of large-scale interconnected systems it is frequently desirable to be able to determine a decay point of the gain operator, i.e., a point whose image under the monotone operator is strictly smaller than the point itself. The set of such decay points plays a crucial role in checking, in a semi-global fashion, the local input-to-state stability of an interconnected system and in the numerical construction of a LISS Lyapunov function. We provide a homotopy algorithm that computes a decay point of a monotone op- erator. For this purpose we use a fixed point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. The advantage to an earlier algorithm is demonstrated. Furthermore an example is given which shows how to analyze a given perturbed interconnected system.Comment: 30 pages, 7 figures, 4 table

    Monotonicity preserving approximation of multivariate scattered data

    Full text link
    This paper describes a new method of monotone interpolation and smoothing of multivariate scattered data. It is based on the assumption that the function to be approximated is Lipschitz continuous. The method provides the optimal approximation in the worst case scenario and tight error bounds. Smoothing of noisy data subject to monotonicity constraints is converted into a quadratic programming problem. Estimation of the unknown Lipschitz constant from the data by sample splitting and cross-validation is described. Extension of the method for locally Lipschitz functions is presented.<br /

    Distribution of Income and Aggregation of Demand.

    Get PDF
    We show that, under certain regularity conditions, if the distribution of income IS price independent and satisfies a condition on the shape of its graph, then total market demand, F(p), is monotone, i.e., given two positive prices p, and q, one has (p - q) . (F(p) - F(q))

    On the convergence of mirror descent beyond stochastic convex programming

    Get PDF
    In this paper, we examine the convergence of mirror descent in a class of stochastic optimization problems that are not necessarily convex (or even quasi-convex), and which we call variationally coherent. Since the standard technique of "ergodic averaging" offers no tangible benefits beyond convex programming, we focus directly on the algorithm's last generated sample (its "last iterate"), and we show that it converges with probabiility 11 if the underlying problem is coherent. We further consider a localized version of variational coherence which ensures local convergence of stochastic mirror descent (SMD) with high probability. These results contribute to the landscape of non-convex stochastic optimization by showing that (quasi-)convexity is not essential for convergence to a global minimum: rather, variational coherence, a much weaker requirement, suffices. Finally, building on the above, we reveal an interesting insight regarding the convergence speed of SMD: in problems with sharp minima (such as generic linear programs or concave minimization problems), SMD reaches a minimum point in a finite number of steps (a.s.), even in the presence of persistent gradient noise. This result is to be contrasted with existing black-box convergence rate estimates that are only asymptotic.Comment: 30 pages, 5 figure

    A Douglas-Rachford splitting for semi-decentralized equilibrium seeking in generalized aggregative games

    Full text link
    We address the generalized aggregative equilibrium seeking problem for noncooperative agents playing average aggregative games with affine coupling constraints. First, we use operator theory to characterize the generalized aggregative equilibria of the game as the zeros of a monotone set-valued operator. Then, we massage the Douglas-Rachford splitting to solve the monotone inclusion problem and derive a single layer, semi-decentralized algorithm whose global convergence is guaranteed under mild assumptions. The potential of the proposed Douglas-Rachford algorithm is shown on a simplified resource allocation game, where we observe faster convergence with respect to forward-backward algorithms.Comment: arXiv admin note: text overlap with arXiv:1803.1044
    corecore