1,823 research outputs found

    Nonholonomic motion planning: steering using sinusoids

    Get PDF
    Methods for steering systems with nonholonomic constraints between arbitrary configurations are investigated. Suboptimal trajectories are derived for systems that are not in canonical form. Systems in which it takes more than one level of bracketing to achieve controllability are considered. The trajectories use sinusoids at integrally related frequencies to achieve motion at a given bracketing level. A class of systems that can be steered using sinusoids (claimed systems) is defined. Conditions under which a class of two-input systems can be converted into this form are given

    Three-dimensional topological solitons in PT-symmetric optical lattices

    Get PDF
    We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.Peer ReviewedPostprint (published version

    Global Output Feedback Stabilization of a Class of Nonlinear Systems With Multiple Output

    Get PDF
    This paper considers global output feedback stabilization of a class of upper-triangular nonlinear systems with multiple outputs. By coupling a finite-time convergent observer and a saturated homogeneous stabilizer, the global output feedback stabilization can be achieved without the homogeneous growth condition. The proposed techniques are also extended to more general complex nonlinear systems. Various examples, including a ball-and-beam mechanical system and a planar vertical takeoff and landing aircraft, are presented to illustrate the design

    ℒ2-Gain of double integrators with saturation nonlinearity

    Get PDF
    This note uses quadratic surface Lyapunov functions (SuLFs) to efficiently check if a double integrator in feedback with a saturation nonlinearity has ℒ2-gain less than γ > 0. We show that for many such systems, the ℒ2-gain is nonconservative in the sense that this is approximately equal to the lower bound obtained by replacing the saturation with a constant gain of 1. These results allow the use of classical analysis tools like µ-analysis or integral quadratic constraints to analyze systems with double integrators and saturations, including servo systems like some mechanical systems, satellites, hard disks, compact disk players, etc

    Two-dimensional solitons with hidden and explicit vorticity in bimodal cubic-quintic media

    Full text link
    We demonstrate that two-dimensional two-component bright solitons of an annular shape, carrying vorticities (m,±m)(m,\pm m) in the components, may be stable in media with the cubic-quintic nonlinearity, including the \textit{hidden-vorticity} (HV) solitons of the type (m,m)(m,-m), whose net vorticity is zero. Stability regions for the vortices of both (m,±m)(m,\pm m) types are identified for m=1m=1, 2, and 3, by dint of the calculation of stability eigenvalues, and in direct simulations. A novel feature found in the study of the HV solitons is that their stability intervals never reach the (cutoff) point at which the bright vortex carries over into a dark one, hence dark HV solitons can never be stable, contrarily to the bright ones. In addition to the well-known symmetry-breaking (\textit{external}) instability, which splits the ring soliton into a set of fragments flying away in tangential directions, we report two new scenarios of the development of weak instabilities specific to the HV solitons. One features \textit{charge flipping}, with the two components exchanging the angular momentum and periodically reversing the sign of their spins. The composite soliton does not split in this case, therefore we identify such instability as an \textit{intrinsic} one. Eventually, the soliton splits, as weak radiation loss drives it across the border of the ordinary strong (external) instability. Another scenario proceeds through separation of the vortex cores in the two components, each individual core moving toward the outer edge of the annular soliton. After expulsion of the cores, there remains a zero-vorticity breather with persistent internal vibrations.Comment: 10 pages, 11 figure

    Robust Control Methods for Nonlinear Systems with Uncertain Dynamics and Unknown Control Direction

    Get PDF
    Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly affects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special consideration is required in control design for systems that also include unknown bounded disturbances. To cope with these challenges, a robust continuous controller is developed using an ISMC technique, which achieves asymptotic trajectory tracking for systems with unknown bounded disturbances, while simultaneously compensating for parametric uncertainty in the input gain matrix. The ISMC design is rigorously proven to achieve asymptotic trajectory tracking for a quadrotor system and a synthetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator control directions) are known. A much more challenging scenario is encountered in designing controllers for classes of systems, where the uncertainty in the input gain matrix is extreme enough to result in an a priori-unknown control direction. Such a scenario can result when dealing with highly inaccurate dynamic models, unmodeled parameter variations, actuator anomalies, unknown external or internal disturbances, and/or other adversarial operating conditions. To address this challenge, a SMCbased self-recongurable control algorithm is presented, which automatically adjusts for unknown control direction via periodic switching between sliding manifolds that ultimately forces the state to a converging manifold. Rigorous mathematical analyses are presented to prove the theoretical results, and simulation results are provided to demonstrate the effectiveness of the three proposed control algorithms
    corecore