401,971 research outputs found

    Lyapunov constraints and global asymptotic stabilization

    Get PDF
    In this paper, we develop a method for stabilizing underactuated mechanical systems by imposing kinematic constraints (more precisely Lyapunov constraints). If these constraints can be implemented by actuators, i.e., if there exists a related constraint force exerted by the actuators, then the existence of a Lyapunov function for the system under consideration is guaranteed. We establish necessary and sufficient conditions for the existence and uniqueness of constraint forces. These conditions give rise to a system of PDEs whose solution is the required Lyapunov function. To illustrate our results, we solve these PDEs for certain underactuated mechanical systems of interest such as the inertia wheel-pendulum, the inverted pendulum on a cart system and the ball and beam system

    Bifurcation analysis of stabilization circuits in an L-band LDMOS 60-W power amplifier

    Get PDF
    n this letter, the global stability analysis of an L-band push-pull power amplifier is presented. The analysis is carried out for the amplifier operating in different modes, such as Class AB, Class B, and Class E/F, considering variations in the bias voltages, the input power and the input frequency. After determination of the oscillation mode, three different stabilization techniques are applied and compared: feedback resistors, neutralization capacitors, and odd-mode stabilization resistor. The element values of each stabilization network, ensuring a stable behavior for all the operating conditions, are calculated with a bifurcation-analysis technique. Good agreement is found between measured and simulated results

    Inherent global stabilization of unstable local behavior in coupled map lattices

    Full text link
    The behavior of two-dimensional coupled map lattices is studied with respect to the global stabilization of unstable local fixed points without external control. It is numerically shown under which circumstances such inherent global stabilization can be achieved for both synchronous and asynchronous updating. Two necessary conditions for inherent global stabilization are derived analytically.Comment: 17 pages, 10 figures, accepted for publication in Int.J.Bif.Chao

    Exponential ε-tracking and ε-stabilization of second-order nonholonomic SE(2) vehicles using dynamic state feedback

    Get PDF
    In this paper, we address the problem of ε-tracking and ε-stabilization for a class of SE(2) vehicles with second-order nonholonomic constraints. We introduce a class of transformations called near-identity diffeomorphism that allow dynamic partial feedback linearization of the translational dynamics of this class of SE(2) vehicles. This allows us to achieve global exponential ε-stabilization and ε-tracking (in position) for the aforementioned classes of autonomous vehicles using a coordinate-independent dynamic state feedback. This feedback is only discontinuous w.r.t. the augmented state. We apply our results to ε-stabilization and ε-tracking for an underactuated surface vessel

    The transient response of global-mean precipitation to increasing carbon dioxide levels

    Get PDF
    The transient response of global-mean precipitation to an increase in atmospheric carbon dioxide levels of 1% yr(-1) is investigated in 13 fully coupled atmosphere-ocean general circulation models (AOGCMs) and compared to a period of stabilization. During the period of stabilization, when carbon dioxide levels are held constant at twice their unperturbed level and the climate left to warm, precipitation increases at a rate of similar to 2.4% per unit of global-mean surface-air-temperature change in the AOGCMs. However, when carbon dioxide levels are increasing, precipitation increases at a smaller rate of similar to 1.5% per unit of global-mean surface-air-temperature change. This difference can be understood by decomposing the precipitation response into an increase from the response to the global surface-temperature increase (and the climate feedbacks it induces), and a fast atmospheric response to the carbon dioxide radiative forcing that acts to decrease precipitation. According to the multi-model mean, stabilizing atmospheric levels of carbon dioxide would lead to a greater rate of precipitation change per unit of global surface-temperature change

    Minimal Noise-Induced Stabilization of One-Dimensional Diffusions

    Get PDF
    The phenomenon of noise-induced stabilization occurs when an unstable deterministic system of ordinary differential equations is stabilized by the addition of randomness into the system. In this paper, we investigate under what conditions one-dimensional, autonomous stochastic differential equations are stable, where we take the notion of stability to be that of global stochastic boundedness. Specifically, we find the minimum amount of noise necessary for noise-induced stabilization to occur when the drift and noise coefficients are power, polynomial, exponential, or logarithmic functions
    corecore