97,530 research outputs found

    Graph-based Modelling of Concurrent Sequential Patterns

    Get PDF
    Structural relation patterns have been introduced recently to extend the search for complex patterns often hidden behind large sequences of data. This has motivated a novel approach to sequential patterns post-processing and a corresponding data mining method was proposed for Concurrent Sequential Patterns (ConSP). This article refines the approach in the context of ConSP modelling, where a companion graph-based model is devised as an extension of previous work. Two new modelling methods are presented here together with a construction algorithm, to complete the transformation of concurrent sequential patterns to a ConSP-Graph representation. Customer orders data is used to demonstrate the effectiveness of ConSP mining while synthetic sample data highlights the strength of the modelling technique, illuminating the theories developed

    Sequential Patterns Post-processing for Structural Relation Patterns Mining

    Get PDF
    Sequential patterns mining is an important data-mining technique used to identify frequently observed sequential occurrence of items across ordered transactions over time. It has been extensively studied in the literature, and there exists a diversity of algorithms. However, more complex structural patterns are often hidden behind sequences. This article begins with the introduction of a model for the representation of sequential patterns—Sequential Patterns Graph—which motivates the search for new structural relation patterns. An integrative framework for the discovery of these patterns–Postsequential Patterns Mining–is then described which underpins the postprocessing of sequential patterns. A corresponding data-mining method based on sequential patterns postprocessing is proposed and shown to be effective in the search for concurrent patterns. From experiments conducted on three component algorithms, it is demonstrated that sequential patterns-based concurrent patterns mining provides an efficient method for structural knowledge discover

    On partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency

    Full text link
    Concurrent systems are notoriously difficult to analyze, and technological advances such as weak memory architectures greatly compound this problem. This has renewed interest in partial order semantics as a theoretical foundation for formal verification techniques. Among these, symbolic techniques have been shown to be particularly effective at finding concurrency-related bugs because they can leverage highly optimized decision procedures such as SAT/SMT solvers. This paper gives new fundamental results on partial order semantics for SAT/SMT-based symbolic encodings of weak memory concurrency. In particular, we give the theoretical basis for a decision procedure that can handle a fragment of concurrent programs endowed with least fixed point operators. In addition, we show that a certain partial order semantics of relaxed sequential consistency is equivalent to the conjunction of three extensively studied weak memory axioms by Alglave et al. An important consequence of this equivalence is an asymptotically smaller symbolic encoding for bounded model checking which has only a quadratic number of partial order constraints compared to the state-of-the-art cubic-size encoding.Comment: 15 pages, 3 figure

    A Denotational Semantics for SPARC TSO

    Full text link
    The SPARC TSO weak memory model is defined axiomatically, with a non-compositional formulation that makes modular reasoning about programs difficult. Our denotational approach uses pomsets to provide a compositional semantics capturing exactly the behaviours permitted by SPARC TSO. It uses buffered states and an inductive definition of execution to assign an input-output meaning to pomsets. We show that our denotational account is sound and complete relative to the axiomatic account, that is, that it captures exactly the behaviours permitted by the axiomatic account. Our compositional approach facilitates the study of SPARC TSO and supports modular analysis of program behaviour

    Abstract Interpretation with Unfoldings

    Full text link
    We present and evaluate a technique for computing path-sensitive interference conditions during abstract interpretation of concurrent programs. In lieu of fixed point computation, we use prime event structures to compactly represent causal dependence and interference between sequences of transformers. Our main contribution is an unfolding algorithm that uses a new notion of independence to avoid redundant transformer application, thread-local fixed points to reduce the size of the unfolding, and a novel cutoff criterion based on subsumption to guarantee termination of the analysis. Our experiments show that the abstract unfolding produces an order of magnitude fewer false alarms than a mature abstract interpreter, while being several orders of magnitude faster than solver-based tools that have the same precision.Comment: Extended version of the paper (with the same title and authors) to appear at CAV 201

    Software Model Checking with Explicit Scheduler and Symbolic Threads

    Full text link
    In many practical application domains, the software is organized into a set of threads, whose activation is exclusive and controlled by a cooperative scheduling policy: threads execute, without any interruption, until they either terminate or yield the control explicitly to the scheduler. The formal verification of such software poses significant challenges. On the one side, each thread may have infinite state space, and might call for abstraction. On the other side, the scheduling policy is often important for correctness, and an approach based on abstracting the scheduler may result in loss of precision and false positives. Unfortunately, the translation of the problem into a purely sequential software model checking problem turns out to be highly inefficient for the available technologies. We propose a software model checking technique that exploits the intrinsic structure of these programs. Each thread is translated into a separate sequential program and explored symbolically with lazy abstraction, while the overall verification is orchestrated by the direct execution of the scheduler. The approach is optimized by filtering the exploration of the scheduler with the integration of partial-order reduction. The technique, called ESST (Explicit Scheduler, Symbolic Threads) has been implemented and experimentally evaluated on a significant set of benchmarks. The results demonstrate that ESST technique is way more effective than software model checking applied to the sequentialized programs, and that partial-order reduction can lead to further performance improvements.Comment: 40 pages, 10 figures, accepted for publication in journal of logical methods in computer scienc
    • …
    corecore