22 research outputs found

    Convex Hull Formulations for Mixed-Integer Multilinear Functions

    Full text link
    In this paper, we present convex hull formulations for a mixed-integer, multilinear term/function (MIMF) that features products of multiple continuous and binary variables. We develop two equivalent convex relaxations of an MIMF and study their polyhedral properties in their corresponding higher-dimensional spaces. We numerically observe that the proposed formulations consistently perform better than state-of-the-art relaxation approaches

    Recursive McCormick Linearization of Multilinear Programs

    Full text link
    Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce the first systematic approach for identifying RMLs, in which we focus on the identification of linear relaxation with a small number of artificial variables and with strong LP bounds. We present a novel mechanism for representing all the possible RMLs, which we use to design an exact mixed-integer programming (MIP) formulation for the identification of minimum-size RMLs; we show that this problem is NP-hard in general, whereas a special case is fixed-parameter tractable. Moreover, we explore structural properties of our formulation to derive an exact MIP model that identifies RMLs of a given size with the best possible relaxation bound is optimal. Our numerical results on a collection of benchmarks indicate that our algorithms outperform the RML strategy implemented in state-of-the-art global optimization solvers.Comment: 22 pages, 11 figures, Under Revie

    Multivariate McCormick relaxations

    Get PDF
    McCormick (Math Prog 10(1):147–175, 1976) provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form F ∘ f, where F is a univariate function. Herein, the composition theorem is generalized to allow multivariate outer functions F, and theory for the propagation of subgradients is presented. The generalization interprets the McCormick relaxation approach as a decomposition method for the auxiliary variable method. In addition to extending the framework, the new result provides a tool for the proof of relaxations of specific functions. Moreover, a direct consequence is an improved relaxation for the product of two functions, at least as tight as McCormick’s result, and often tighter. The result also allows the direct relaxation of multilinear products of functions. Furthermore, the composition result is applied to obtain improved convex underestimators for the minimum/maximum and the division of two functions for which current relaxations are often weak. These cases can be extended to allow composition of a variety of functions for which relaxations have been proposed

    Error bounds for monomial convexification in polynomial optimization

    Get PDF
    Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of [0,1]n[0,1]^n. This implies additive error bounds for relaxing a polynomial optimization problem by convexifying each monomial separately. Our main error bounds depend primarily on the degree of the monomial, making them easy to compute. Since monomial convexification studies depend on the bounds on the associated variables, in the second part, we conduct an error analysis for a multilinear monomial over two different types of box constraints. As part of this analysis, we also derive the convex hull of a multilinear monomial over [−1,1]n[-1,1]^n.Comment: 33 pages, 2 figures, to appear in journa

    (Global) Optimization: Historical notes and recent developments

    Get PDF
    Recent developments in (Global) Optimization are surveyed in this paper. We collected and commented quite a large number of recent references which, in our opinion, well represent the vivacity, deepness, and width of scope of current computational approaches and theoretical results about nonconvex optimization problems. Before the presentation of the recent developments, which are subdivided into two parts related to heuristic and exact approaches, respectively, we briefly sketch the origin of the discipline and observe what, from the initial attempts, survived, what was not considered at all as well as a few approaches which have been recently rediscovered, mostly in connection with machine learning
    corecore