1,273 research outputs found

    Spatial channel characterization for smart antenna solutions in FDD wireless networks

    Get PDF
    This paper introduces a novel metric for determining the spatial decorrelation between the up- and down-link wireless bearers in frequency division duplex (FDD) networks. This metric has direct relevance to smart or adaptive antenna array base-station deployments in cellular networks, which are known to offer capacity enhancement when compared to fixed coverage solutions. In particular, the results presented were obtained from field trial measurement campaigns for both urban and rural scenarios, with the observations having a direct impact on the choice of down-link beamforming architecture in FDD applications. Further, it is shown that significant spatial decorrelation can occur in urban deployments for bearer separations as small as 5 MHz. Results are presented in terms of both instantaneous characteristics as well as time averaged estimates, thus facilitating the appraisal of smart antenna solutions in both packet and circuit switched network

    A reduced-complexity and asymptotically efficient time-delay estimator

    Get PDF
    This paper considers the problem of estimating the time delays of multiple replicas of a known signal received by an array of antennas. Under the assumptions that the noise and co-channel interference (CCI) are spatially colored Gaussian processes and that the spatial signatures are arbitrary, the maximum likelihood (ML) solution to the general time delay estimation problem is derived. The resulting criterion for the delays yields consistent and asymptotically efficient estimates. However, the criterion is highly non-linear, and not conducive to simple minimization procedures. We propose a new cost function that is shown to provide asymptotically efficient delay estimates. We also outline a heuristic way of deriving this cost function. The form of this new estimator lends itself to minimization by the computationally attractive iterative quadratic maximum likelihood (IQML) algorithm. The existence of simple yet accurate initialization schemes based on ESPRIT and identity weightings makes the approach viable for practical implementation.Peer ReviewedPostprint (published version

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity
    • …
    corecore