2 research outputs found

    A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow

    Get PDF
    A three-dimensional finite element method has been implemented to predict the transmission loss of a packed muffler and a parallel baffle silencer for a given frequency range. Iso-parametric quadratic tetrahedral elements have been chosen due to their flexibility and accuracy in modeling geometries with curved surfaces. For accurate physical representation, perforated plates are modeled with complex acoustic impedance while absorption linings are modeled as a bulk media with a complex speed of sound and mean density. Domain decomposition and parallel processing techniques are applied to address the high computational and memory requirements. The comparison of the computationally predicted and the experimentally measured transmission loss shows a good agreement

    Global and Localized Parallel Preconditioning Techniques for Large Scale Solid Earth Simulations

    No full text
    We investigate and compare a few parallel preconditioning techniques in the iterative solution of large sparse linear systems arising from solid Earth simulation with and without using contact information in the domain partitioning process. Previous studies are focused on using static or matrix pattern based incomplete LU (ILU) preconditioners in a localized preconditioner implementation. Our current studies are concerned about preconditioner performance for solving two different problem configurations with and without known contact information. For the cases with contact information, we use localized threshold value based incomplete LU (ILUT) preconditioner to improve efficiency. For the cases without contact information, we use a global sparse approximate inverse preconditioner with a static sparsity pattern to achieve robustness. Numerical results from simulating ground motion on a parallel supercomputer are given to compare the effectiveness of these parallel preconditioning techniques
    corecore