43,170 research outputs found

    Towards Visual Ego-motion Learning in Robots

    Full text link
    Many model-based Visual Odometry (VO) algorithms have been proposed in the past decade, often restricted to the type of camera optics, or the underlying motion manifold observed. We envision robots to be able to learn and perform these tasks, in a minimally supervised setting, as they gain more experience. To this end, we propose a fully trainable solution to visual ego-motion estimation for varied camera optics. We propose a visual ego-motion learning architecture that maps observed optical flow vectors to an ego-motion density estimate via a Mixture Density Network (MDN). By modeling the architecture as a Conditional Variational Autoencoder (C-VAE), our model is able to provide introspective reasoning and prediction for ego-motion induced scene-flow. Additionally, our proposed model is especially amenable to bootstrapped ego-motion learning in robots where the supervision in ego-motion estimation for a particular camera sensor can be obtained from standard navigation-based sensor fusion strategies (GPS/INS and wheel-odometry fusion). Through experiments, we show the utility of our proposed approach in enabling the concept of self-supervised learning for visual ego-motion estimation in autonomous robots.Comment: Conference paper; Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2017, Vancouver CA; 8 pages, 8 figures, 2 table

    DeepInf: Social Influence Prediction with Deep Learning

    Full text link
    Social and information networking activities such as on Facebook, Twitter, WeChat, and Weibo have become an indispensable part of our everyday life, where we can easily access friends' behaviors and are in turn influenced by them. Consequently, an effective social influence prediction for each user is critical for a variety of applications such as online recommendation and advertising. Conventional social influence prediction approaches typically design various hand-crafted rules to extract user- and network-specific features. However, their effectiveness heavily relies on the knowledge of domain experts. As a result, it is usually difficult to generalize them into different domains. Inspired by the recent success of deep neural networks in a wide range of computing applications, we design an end-to-end framework, DeepInf, to learn users' latent feature representation for predicting social influence. In general, DeepInf takes a user's local network as the input to a graph neural network for learning her latent social representation. We design strategies to incorporate both network structures and user-specific features into convolutional neural and attention networks. Extensive experiments on Open Academic Graph, Twitter, Weibo, and Digg, representing different types of social and information networks, demonstrate that the proposed end-to-end model, DeepInf, significantly outperforms traditional feature engineering-based approaches, suggesting the effectiveness of representation learning for social applications.Comment: 10 pages, 5 figures, to appear in KDD 2018 proceeding

    Going Deeper into First-Person Activity Recognition

    Full text link
    We bring together ideas from recent work on feature design for egocentric action recognition under one framework by exploring the use of deep convolutional neural networks (CNN). Recent work has shown that features such as hand appearance, object attributes, local hand motion and camera ego-motion are important for characterizing first-person actions. To integrate these ideas under one framework, we propose a twin stream network architecture, where one stream analyzes appearance information and the other stream analyzes motion information. Our appearance stream encodes prior knowledge of the egocentric paradigm by explicitly training the network to segment hands and localize objects. By visualizing certain neuron activation of our network, we show that our proposed architecture naturally learns features that capture object attributes and hand-object configurations. Our extensive experiments on benchmark egocentric action datasets show that our deep architecture enables recognition rates that significantly outperform state-of-the-art techniques -- an average 6.6%6.6\% increase in accuracy over all datasets. Furthermore, by learning to recognize objects, actions and activities jointly, the performance of individual recognition tasks also increase by 30%30\% (actions) and 14%14\% (objects). We also include the results of extensive ablative analysis to highlight the importance of network design decisions.

    A Network Topology Approach to Bot Classification

    Full text link
    Automated social agents, or bots, are increasingly becoming a problem on social media platforms. There is a growing body of literature and multiple tools to aid in the detection of such agents on online social networking platforms. We propose that the social network topology of a user would be sufficient to determine whether the user is a automated agent or a human. To test this, we use a publicly available dataset containing users on Twitter labelled as either automated social agent or human. Using an unsupervised machine learning approach, we obtain a detection accuracy rate of 70%

    An Automated Social Graph De-anonymization Technique

    Full text link
    We present a generic and automated approach to re-identifying nodes in anonymized social networks which enables novel anonymization techniques to be quickly evaluated. It uses machine learning (decision forests) to matching pairs of nodes in disparate anonymized sub-graphs. The technique uncovers artefacts and invariants of any black-box anonymization scheme from a small set of examples. Despite a high degree of automation, classification succeeds with significant true positive rates even when small false positive rates are sought. Our evaluation uses publicly available real world datasets to study the performance of our approach against real-world anonymization strategies, namely the schemes used to protect datasets of The Data for Development (D4D) Challenge. We show that the technique is effective even when only small numbers of samples are used for training. Further, since it detects weaknesses in the black-box anonymization scheme it can re-identify nodes in one social network when trained on another.Comment: 12 page

    Imitating Driver Behavior with Generative Adversarial Networks

    Full text link
    The ability to accurately predict and simulate human driving behavior is critical for the development of intelligent transportation systems. Traditional modeling methods have employed simple parametric models and behavioral cloning. This paper adopts a method for overcoming the problem of cascading errors inherent in prior approaches, resulting in realistic behavior that is robust to trajectory perturbations. We extend Generative Adversarial Imitation Learning to the training of recurrent policies, and we demonstrate that our model outperforms rule-based controllers and maximum likelihood models in realistic highway simulations. Our model both reproduces emergent behavior of human drivers, such as lane change rate, while maintaining realistic control over long time horizons.Comment: 8 pages, 6 figure
    • …
    corecore