570,992 research outputs found
Bandit Algorithms for Tree Search
Bandit based methods for tree search have recently gained popularity when
applied to huge trees, e.g. in the game of go (Gelly et al., 2006). The UCT
algorithm (Kocsis and Szepesvari, 2006), a tree search method based on Upper
Confidence Bounds (UCB) (Auer et al., 2002), is believed to adapt locally to
the effective smoothness of the tree. However, we show that UCT is too
``optimistic'' in some cases, leading to a regret O(exp(exp(D))) where D is the
depth of the tree. We propose alternative bandit algorithms for tree search.
First, a modification of UCT using a confidence sequence that scales
exponentially with the horizon depth is proven to have a regret O(2^D
\sqrt{n}), but does not adapt to possible smoothness in the tree. We then
analyze Flat-UCB performed on the leaves and provide a finite regret bound with
high probability. Then, we introduce a UCB-based Bandit Algorithm for Smooth
Trees which takes into account actual smoothness of the rewards for performing
efficient ``cuts'' of sub-optimal branches with high confidence. Finally, we
present an incremental tree search version which applies when the full tree is
too big (possibly infinite) to be entirely represented and show that with high
probability, essentially only the optimal branches is indefinitely developed.
We illustrate these methods on a global optimization problem of a Lipschitz
function, given noisy data
Finite Domain Bounds Consistency Revisited
A widely adopted approach to solving constraint satisfaction problems
combines systematic tree search with constraint propagation for pruning the
search space. Constraint propagation is performed by propagators implementing a
certain notion of consistency. Bounds consistency is the method of choice for
building propagators for arithmetic constraints and several global constraints
in the finite integer domain. However, there has been some confusion in the
definition of bounds consistency. In this paper we clarify the differences and
similarities among the three commonly used notions of bounds consistency.Comment: 12 page
Neural Architecture Search using Deep Neural Networks and Monte Carlo Tree Search
Neural Architecture Search (NAS) has shown great success in automating the
design of neural networks, but the prohibitive amount of computations behind
current NAS methods requires further investigations in improving the sample
efficiency and the network evaluation cost to get better results in a shorter
time. In this paper, we present a novel scalable Monte Carlo Tree Search (MCTS)
based NAS agent, named AlphaX, to tackle these two aspects. AlphaX improves the
search efficiency by adaptively balancing the exploration and exploitation at
the state level, and by a Meta-Deep Neural Network (DNN) to predict network
accuracies for biasing the search toward a promising region. To amortize the
network evaluation cost, AlphaX accelerates MCTS rollouts with a distributed
design and reduces the number of epochs in evaluating a network by transfer
learning, which is guided with the tree structure in MCTS. In 12 GPU days and
1000 samples, AlphaX found an architecture that reaches 97.84\% top-1 accuracy
on CIFAR-10, and 75.5\% top-1 accuracy on ImageNet, exceeding SOTA NAS methods
in both the accuracy and sampling efficiency. Particularly, we also evaluate
AlphaX on NASBench-101, a large scale NAS dataset; AlphaX is 3x and 2.8x more
sample efficient than Random Search and Regularized Evolution in finding the
global optimum. Finally, we show the searched architecture improves a variety
of vision applications from Neural Style Transfer, to Image Captioning and
Object Detection.Comment: To appear in the Thirty-Fourth AAAI conference on Artificial
Intelligence (AAAI-2020
- …
