5 research outputs found

    An Overview of Integral Quadratic Constraints for Delayed Nonlinear and Parameter-Varying Systems

    Full text link
    A general framework is presented for analyzing the stability and performance of nonlinear and linear parameter varying (LPV) time delayed systems. First, the input/output behavior of the time delay operator is bounded in the frequency domain by integral quadratic constraints (IQCs). A constant delay is a linear, time-invariant system and this leads to a simple, intuitive interpretation for these frequency domain constraints. This simple interpretation is used to derive new IQCs for both constant and varying delays. Second, the performance of nonlinear and LPV delayed systems is bounded using dissipation inequalities that incorporate IQCs. This step makes use of recent results that show, under mild technical conditions, that an IQC has an equivalent representation as a finite-horizon time-domain constraint. Numerical examples are provided to demonstrate the effectiveness of the method for both class of systems

    Exit time asymptotics for small noise stochastic delay differential equations

    Full text link
    Dynamical system models with delayed dynamics and small noise arise in a variety of applications in science and engineering. In many applications, stable equilibrium or periodic behavior is critical to a well functioning system. Sufficient conditions for the stability of equilibrium points or periodic orbits of certain deterministic dynamical systems with delayed dynamics are known and it is of interest to understand the sample path behavior of such systems under the addition of small noise. We consider a small noise stochastic delay differential equation (SDDE) with coefficients that depend on the history of the process over a finite delay interval. We obtain asymptotic estimates, as the noise vanishes, on the time it takes a solution of the stochastic equation to exit a bounded domain that is attracted to a stable equilibrium point or periodic orbit of the corresponding deterministic equation. To obtain these asymptotics, we prove a sample path large deviation principle (LDP) for the SDDE that is uniform over initial conditions in bounded sets. The proof of the uniform sample path LDP uses a variational representation for exponential functionals of strong solutions of the SDDE. We anticipate that the overall approach may be useful in proving uniform sample path LDPs for a broad class of infinite-dimensional small noise stochastic equations.Comment: 39 page

    On Existence and Uniqueness of Stationary Distributions for Stochastic Delay Differential Equations with Positivity Constraints

    Full text link

    Global Stability Analysis of a Nonlinear Model of Internet Congestion Control With Delay

    No full text
    corecore