22,671 research outputs found

    1-Bit Matrix Completion under Exact Low-Rank Constraint

    Full text link
    We consider the problem of noisy 1-bit matrix completion under an exact rank constraint on the true underlying matrix MM^*. Instead of observing a subset of the noisy continuous-valued entries of a matrix MM^*, we observe a subset of noisy 1-bit (or binary) measurements generated according to a probabilistic model. We consider constrained maximum likelihood estimation of MM^*, under a constraint on the entry-wise infinity-norm of MM^* and an exact rank constraint. This is in contrast to previous work which has used convex relaxations for the rank. We provide an upper bound on the matrix estimation error under this model. Compared to the existing results, our bound has faster convergence rate with matrix dimensions when the fraction of revealed 1-bit observations is fixed, independent of the matrix dimensions. We also propose an iterative algorithm for solving our nonconvex optimization with a certificate of global optimality of the limiting point. This algorithm is based on low rank factorization of MM^*. We validate the method on synthetic and real data with improved performance over existing methods.Comment: 6 pages, 3 figures, to appear in CISS 201

    Towards Fast-Convergence, Low-Delay and Low-Complexity Network Optimization

    Full text link
    Distributed network optimization has been studied for well over a decade. However, we still do not have a good idea of how to design schemes that can simultaneously provide good performance across the dimensions of utility optimality, convergence speed, and delay. To address these challenges, in this paper, we propose a new algorithmic framework with all these metrics approaching optimality. The salient features of our new algorithm are three-fold: (i) fast convergence: it converges with only O(log(1/ϵ))O(\log(1/\epsilon)) iterations that is the fastest speed among all the existing algorithms; (ii) low delay: it guarantees optimal utility with finite queue length; (iii) simple implementation: the control variables of this algorithm are based on virtual queues that do not require maintaining per-flow information. The new technique builds on a kind of inexact Uzawa method in the Alternating Directional Method of Multiplier, and provides a new theoretical path to prove global and linear convergence rate of such a method without requiring the full rank assumption of the constraint matrix

    Smoothed analysis of the low-rank approach for smooth semidefinite programs

    Full text link
    We consider semidefinite programs (SDPs) of size n with equality constraints. In order to overcome scalability issues, Burer and Monteiro proposed a factorized approach based on optimizing over a matrix Y of size nn by kk such that X=YYX = YY^* is the SDP variable. The advantages of such formulation are twofold: the dimension of the optimization variable is reduced and positive semidefiniteness is naturally enforced. However, the problem in Y is non-convex. In prior work, it has been shown that, when the constraints on the factorized variable regularly define a smooth manifold, provided k is large enough, for almost all cost matrices, all second-order stationary points (SOSPs) are optimal. Importantly, in practice, one can only compute points which approximately satisfy necessary optimality conditions, leading to the question: are such points also approximately optimal? To this end, and under similar assumptions, we use smoothed analysis to show that approximate SOSPs for a randomly perturbed objective function are approximate global optima, with k scaling like the square root of the number of constraints (up to log factors). Moreover, we bound the optimality gap at the approximate solution of the perturbed problem with respect to the original problem. We particularize our results to an SDP relaxation of phase retrieval
    corecore