14,537 research outputs found

    BPGrad: Towards Global Optimality in Deep Learning via Branch and Pruning

    Full text link
    Understanding the global optimality in deep learning (DL) has been attracting more and more attention recently. Conventional DL solvers, however, have not been developed intentionally to seek for such global optimality. In this paper we propose a novel approximation algorithm, BPGrad, towards optimizing deep models globally via branch and pruning. Our BPGrad algorithm is based on the assumption of Lipschitz continuity in DL, and as a result it can adaptively determine the step size for current gradient given the history of previous updates, wherein theoretically no smaller steps can achieve the global optimality. We prove that, by repeating such branch-and-pruning procedure, we can locate the global optimality within finite iterations. Empirically an efficient solver based on BPGrad for DL is proposed as well, and it outperforms conventional DL solvers such as Adagrad, Adadelta, RMSProp, and Adam in the tasks of object recognition, detection, and segmentation

    On the Analysis of Trajectories of Gradient Descent in the Optimization of Deep Neural Networks

    Full text link
    Theoretical analysis of the error landscape of deep neural networks has garnered significant interest in recent years. In this work, we theoretically study the importance of noise in the trajectories of gradient descent towards optimal solutions in multi-layer neural networks. We show that adding noise (in different ways) to a neural network while training increases the rank of the product of weight matrices of a multi-layer linear neural network. We thus study how adding noise can assist reaching a global optimum when the product matrix is full-rank (under certain conditions). We establish theoretical foundations between the noise induced into the neural network - either to the gradient, to the architecture, or to the input/output to a neural network - and the rank of product of weight matrices. We corroborate our theoretical findings with empirical results.Comment: 4 pages + 1 figure (main, excluding references), 5 pages + 4 figures (appendix

    Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning

    Full text link
    For nonconvex optimization in machine learning, this article proves that every local minimum achieves the globally optimal value of the perturbable gradient basis model at any differentiable point. As a result, nonconvex machine learning is theoretically as supported as convex machine learning with a handcrafted basis in terms of the loss at differentiable local minima, except in the case when a preference is given to the handcrafted basis over the perturbable gradient basis. The proofs of these results are derived under mild assumptions. Accordingly, the proven results are directly applicable to many machine learning models, including practical deep neural networks, without any modification of practical methods. Furthermore, as special cases of our general results, this article improves or complements several state-of-the-art theoretical results on deep neural networks, deep residual networks, and overparameterized deep neural networks with a unified proof technique and novel geometric insights. A special case of our results also contributes to the theoretical foundation of representation learning.Comment: Neural computation, MIT pres
    corecore