767,583 research outputs found
World weather program
A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented
The Global Ocean Observing System: One perspective
This document presents a possible organization for a Global Ocean Observing System (GOOS) within the Intergovernmental Oceanographic Commission and the joint ocean programs with the World Meteorological Organization. The document and the organization presented here is not intended to be definitive, complete or the best possible organization for such an observation program. It is presented at this time to demonstrate three points. The first point to be made is that an international program office for GOOS along the lines of the WOCE and TOGA IPOs is essential. The second point is that national programs will have to continue to collect data at the scale of WOCE plus TOGA and more. The third point is that there are many existing groups and committees within the IOC and joint IOC/WMO ocean programs that can contribute essential experience to and form part of the basis of a Global Ocean Observing System. It is particularly important to learn from what has worked and what has not worked in the past if a successful ocean observing system is to result
Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array
Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO2, and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry
Precise orbit determination for NASA's earth observing system using GPS (Global Positioning System)
An application of a precision orbit determination technique for NASA's Earth Observing System (EOS) using the Global Positioning System (GPS) is described. This technique allows the geometric information from measurements of GPS carrier phase and P-code pseudo-range to be exploited while minimizing requirements for precision dynamical modeling. The method combines geometric and dynamic information to determine the spacecraft trajectory; the weight on the dynamic information is controlled by adjusting fictitious spacecraft accelerations in three dimensions which are treated as first order exponentially time correlated stochastic processes. By varying the time correlation and uncertainty of the stochastic accelerations, the technique can range from purely geometric to purely dynamic. Performance estimates for this technique as applied to the orbit geometry planned for the EOS platforms indicate that decimeter accuracies for EOS orbit position may be obtainable. The sensitivity of the predicted orbit uncertainties to model errors for station locations, nongravitational platform accelerations, and Earth gravity is also presented
The Global Observing System in the Assimilation Context
Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues
EOS Data and Information System (EOSDIS)
In the past decade, science and technology have reached levels that permit assessments of global environmental change. Scientific success in understanding global environmental change depends on integration and management of numerous data sources. The Global Change Data and Information System (GCDIS) must provide for the management of data, information dissemination, and technology transfer. The Earth Observing System Data and Information System (EOSDIS) is NASA's portion of this global change information system
PICES Press, Vol. 8, No. 1, January 2000
The state of PICES science - 1999
The status of the Bering Sea: January - July, 1999
The state of the western North Pacific in the second half of 1998
The state of the eastern North Pacific since February 1999
MEQ/WG 8 Practical Workshop
Michael M. Mullin - A biography
Highlights of Eighth Annual Meeting
Mechanism causing the variability of the Japanese sardine population: Achievements of the Bio-Cosmos Project in Japan
Climate change, global warming, and the PICES mandate – The need for improved monitoring
The new age of China-GLOBEC study
GLOBEC activities in Korean waters
Aspects of the Global Ocean Observing System (GOOS
Nonlinear management of the angular momentum of soliton clusters
We demonstrate an original approach to acquire nonlinear control over the
angular momentum of a cluster of solitary waves. Our model, derived from a
general description of nonlinear energy propagation in dispersive media, shows
that the cluster angular momentum can be adjusted by acting on the global
energy input into the system. The phenomenon is experimentally verified in
liquid crystals by observing power-dependent rotation of a two-soliton cluster.Comment: 4 pages, 3 figure
- …
