470 research outputs found

    Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    Full text link
    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface.Comment: Accepted in Medical Image Analysi

    Maximization of Laplace-Beltrami eigenvalues on closed Riemannian surfaces

    Get PDF
    Let (M,g)(M,g) be a connected, closed, orientable Riemannian surface and denote by λk(M,g)\lambda_k(M,g) the kk-th eigenvalue of the Laplace-Beltrami operator on (M,g)(M,g). In this paper, we consider the mapping (M,g)↦λk(M,g)(M, g)\mapsto \lambda_k(M,g). We propose a computational method for finding the conformal spectrum Λkc(M,[g0])\Lambda^c_k(M,[g_0]), which is defined by the eigenvalue optimization problem of maximizing λk(M,g)\lambda_k(M,g) for kk fixed as gg varies within a conformal class [g0][g_0] of fixed volume textrmvol(M,g)=1textrm{vol}(M,g) = 1. We also propose a computational method for the problem where MM is additionally allowed to vary over surfaces with fixed genus, γ\gamma. This is known as the topological spectrum for genus γ\gamma and denoted by Λkt(γ)\Lambda^t_k(\gamma). Our computations support a conjecture of N. Nadirashvili (2002) that Λkt(0)=8πk\Lambda^t_k(0) = 8 \pi k, attained by a sequence of surfaces degenerating to a union of kk identical round spheres. Furthermore, based on our computations, we conjecture that Λkt(1)=8π23+8π(k−1)\Lambda^t_k(1) = \frac{8\pi^2}{\sqrt{3}} + 8\pi (k-1), attained by a sequence of surfaces degenerating into a union of an equilateral flat torus and k−1k-1 identical round spheres. The values are compared to several surfaces where the Laplace-Beltrami eigenvalues are well-known, including spheres, flat tori, and embedded tori. In particular, we show that among flat tori of volume one, the kk-th Laplace-Beltrami eigenvalue has a local maximum with value λk=4π2⌈k2⌉2(⌈k2⌉2−14)−12\lambda_k = 4\pi^2 \left\lceil \frac{k}{2} \right\rceil^2 \left( \left\lceil \frac{k}{2} \right\rceil^2 - \frac{1}{4}\right)^{-\frac{1}{2}}. Several properties are also studied computationally, including uniqueness, symmetry, and eigenvalue multiplicity.Comment: 43 pages, 18 figure

    Spectrum of the Laplace-Beltrami Operator and the Phase Structure of Causal Dynamical Triangulation

    Full text link
    We propose a new method to characterize the different phases observed in the non-perturbative numerical approach to quantum gravity known as Causal Dynamical Triangulation. The method is based on the analysis of the eigenvalues and the eigenvectors of the Laplace-Beltrami operator computed on the triangulations: it generalizes previous works based on the analysis of diffusive processes and proves capable of providing more detailed information on the geometric properties of the triangulations. In particular, we apply the method to the analysis of spatial slices, showing that the different phases can be characterized by a new order parameter related to the presence or absence of a gap in the spectrum of the Laplace-Beltrami operator, and deriving an effective dimensionality of the slices at the different scales. We also propose quantities derived from the spectrum that could be used to monitor the running to the continuum limit around a suitable critical point in the phase diagram, if any is found.Comment: 21 pages, 26 figures, 2 table

    Surface Networks

    Full text link
    We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator. Despite offering excellent sample complexity and built-in invariances, intrinsic geometry alone is invariant to isometric deformations, making it unsuitable for many applications. To overcome this limitation, we propose several upgrades to GNNs to leverage extrinsic differential geometry properties of three-dimensional surfaces, increasing its modeling power. In particular, we propose to exploit the Dirac operator, whose spectrum detects principal curvature directions --- this is in stark contrast with the classical Laplace operator, which directly measures mean curvature. We coin the resulting models \emph{Surface Networks (SN)}. We prove that these models define shape representations that are stable to deformation and to discretization, and we demonstrate the efficiency and versatility of SNs on two challenging tasks: temporal prediction of mesh deformations under non-linear dynamics and generative models using a variational autoencoder framework with encoders/decoders given by SNs

    Shape Analysis Using Spectral Geometry

    Get PDF
    Shape analysis is a fundamental research topic in computer graphics and computer vision. To date, more and more 3D data is produced by those advanced acquisition capture devices, e.g., laser scanners, depth cameras, and CT/MRI scanners. The increasing data demands advanced analysis tools including shape matching, retrieval, deformation, etc. Nevertheless, 3D Shapes are represented with Euclidean transformations such as translation, scaling, and rotation and digital mesh representations are irregularly sampled. The shape can also deform non-linearly and the sampling may vary. In order to address these challenging problems, we investigate Laplace-Beltrami shape spectra from the differential geometry perspective, focusing more on the intrinsic properties. In this dissertation, the shapes are represented with 2 manifolds, which are differentiable. First, we discuss in detail about the salient geometric feature points in the Laplace-Beltrami spectral domain instead of traditional spatial domains. Simultaneously, the local shape descriptor of a feature point is the Laplace-Beltrami spectrum of the spatial region associated to the point, which are stable and distinctive. The salient spectral geometric features are invariant to spatial Euclidean transforms, isometric deformations and mesh triangulations. Both global and partial matching can be achieved with these salient feature points. Next, we introduce a novel method to analyze a set of poses, i.e., near-isometric deformations, of 3D models that are unregistered. Different shapes of poses are transformed from the 3D spatial domain to a geometry spectral one where all near isometric deformations, mesh triangulations and Euclidean transformations are filtered away. Semantic parts of that model are then determined based on the computed geometric properties of all the mapped vertices in the geometry spectral domain while semantic skeleton can be automatically built with joints detected. Finally we prove the shape spectrum is a continuous function to a scale function on the conformal factor of the manifold. The derivatives of the eigenvalues are analytically expressed with those of the scale function. The property applies to both continuous domain and discrete triangle meshes. On the triangle meshes, a spectrum alignment algorithm is developed. Given two closed triangle meshes, the eigenvalues can be aligned from one to the other and the eigenfunction distributions are aligned as well. This extends the shape spectra across non-isometric deformations, supporting a registration-free analysis of general motion data
    • …
    corecore