4 research outputs found

    Global Energy Matching Method for Atomistic-to-Continuum Modeling of Self-Assembling Biopolymer Aggregates

    Get PDF
    This paper studies mathematical models of biopolymer supramolecular aggregates that are formed by the self-assembly of single monomers. We develop a new multiscale numerical approach to model the structural properties of such aggregates. This theoretical approach establishes micro-macro relations between the geometrical and mechanical properties of the monomers and supramolecular aggregates. Most atomistic-to-continuum methods are constrained by a crystalline order or a periodic setting and therefore cannot be directly applied to modeling of soft matter. By contrast, the energy matching method developed in this paper does not require crystalline order and, therefore, can be applied to general microstructures with strongly variable spatial correlations. In this paper we use this method to compute the shape and the bending stiffness of their supramolecular aggregates from known chiral and amphiphilic properties of the short chain peptide monomers. Numerical implementation of our approach demonstrates consistency with results obtained by molecular dynamics simulations

    Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast

    Get PDF
    We construct finite-dimensional approximations of solution spaces of divergence form operators with LL^\infty-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the property that the solution space of these operators is compactly embedded in H1H^1 if source terms are in the unit ball of L2L^2 instead of the unit ball of H1H^{-1}. Approximation spaces are generated by solving elliptic PDEs on localized sub-domains with source terms corresponding to approximation bases for H2H^2. The H1H^1-error estimates show that O(hd)\mathcal{O}(h^{-d})-dimensional spaces with basis elements localized to sub-domains of diameter O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) (with α[1/2,1)\alpha \in [1/2,1)) result in an O(h22α)\mathcal{O}(h^{2-2\alpha}) accuracy for elliptic, parabolic and hyperbolic problems. For high-contrast media, the accuracy of the method is preserved provided that localized sub-domains contain buffer zones of width O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) where the contrast of the medium remains bounded. The proposed method can naturally be generalized to vectorial equations (such as elasto-dynamics).Comment: Accepted for publication in SIAM MM

    Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast

    Get PDF
    We consider divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L(Ω)L^\infty(\Omega), ΩRd\Omega \subset \R^d) coefficients a(x)a(x) that, in particular, model media with non-separated scales and high contrast in material properties. We define the flux norm as the L2L^2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H1H^1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (e.g., piecewise polynomial). We refer to this property as the {\it transfer property}. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities which play the same role in our approach as the div-curl lemma in classical homogenization.Comment: Accepted for publication in Archives for Rational Mechanics and Analysi
    corecore