42 research outputs found

    On the Global Linear Convergence of the ADMM with Multi-Block Variables

    Full text link
    The alternating direction method of multipliers (ADMM) has been widely used for solving structured convex optimization problems. In particular, the ADMM can solve convex programs that minimize the sum of NN convex functions with NN-block variables linked by some linear constraints. While the convergence of the ADMM for N=2N=2 was well established in the literature, it remained an open problem for a long time whether or not the ADMM for N≥3N \ge 3 is still convergent. Recently, it was shown in [3] that without further conditions the ADMM for N≥3N\ge 3 may actually fail to converge. In this paper, we show that under some easily verifiable and reasonable conditions the global linear convergence of the ADMM when N≥3N\geq 3 can still be assured, which is important since the ADMM is a popular method for solving large scale multi-block optimization models and is known to perform very well in practice even when N≥3N\ge 3. Our study aims to offer an explanation for this phenomenon

    Iteration Complexity Analysis of Multi-Block ADMM for a Family of Convex Minimization without Strong Convexity

    Get PDF
    The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems due to its superior practical performance. On the theoretical side however, a counterexample was shown in [7] indicating that the multi-block ADMM for minimizing the sum of NN (N≥3)(N\geq 3) convex functions with NN block variables linked by linear constraints may diverge. It is therefore of great interest to investigate further sufficient conditions on the input side which can guarantee convergence for the multi-block ADMM. The existing results typically require the strong convexity on parts of the objective. In this paper, we present convergence and convergence rate results for the multi-block ADMM applied to solve certain NN-block (N≥3)(N\geq 3) convex minimization problems without requiring strong convexity. Specifically, we prove the following two results: (1) the multi-block ADMM returns an ϵ\epsilon-optimal solution within O(1/ϵ2)O(1/\epsilon^2) iterations by solving an associated perturbation to the original problem; (2) the multi-block ADMM returns an ϵ\epsilon-optimal solution within O(1/ϵ)O(1/\epsilon) iterations when it is applied to solve a certain sharing problem, under the condition that the augmented Lagrangian function satisfies the Kurdyka-Lojasiewicz property, which essentially covers most convex optimization models except for some pathological cases.Comment: arXiv admin note: text overlap with arXiv:1408.426

    L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework

    Full text link
    Despite the importance of sparsity in many large-scale applications, there are few methods for distributed optimization of sparsity-inducing objectives. In this paper, we present a communication-efficient framework for L1-regularized optimization in the distributed environment. By viewing classical objectives in a more general primal-dual setting, we develop a new class of methods that can be efficiently distributed and applied to common sparsity-inducing models, such as Lasso, sparse logistic regression, and elastic net-regularized problems. We provide theoretical convergence guarantees for our framework, and demonstrate its efficiency and flexibility with a thorough experimental comparison on Amazon EC2. Our proposed framework yields speedups of up to 50x as compared to current state-of-the-art methods for distributed L1-regularized optimization

    CoCoA: A General Framework for Communication-Efficient Distributed Optimization

    Get PDF
    The scale of modern datasets necessitates the development of efficient distributed optimization methods for machine learning. We present a general-purpose framework for distributed computing environments, CoCoA, that has an efficient communication scheme and is applicable to a wide variety of problems in machine learning and signal processing. We extend the framework to cover general non-strongly-convex regularizers, including L1-regularized problems like lasso, sparse logistic regression, and elastic net regularization, and show how earlier work can be derived as a special case. We provide convergence guarantees for the class of convex regularized loss minimization objectives, leveraging a novel approach in handling non-strongly-convex regularizers and non-smooth loss functions. The resulting framework has markedly improved performance over state-of-the-art methods, as we illustrate with an extensive set of experiments on real distributed datasets

    Nonconvex Generalization of ADMM for Nonlinear Equality Constrained Problems

    Full text link
    The ever-increasing demand for efficient and distributed optimization algorithms for large-scale data has led to the growing popularity of the Alternating Direction Method of Multipliers (ADMM). However, although the use of ADMM to solve linear equality constrained problems is well understood, we lacks a generic framework for solving problems with nonlinear equality constraints, which are common in practical applications (e.g., spherical constraints). To address this problem, we are proposing a new generic ADMM framework for handling nonlinear equality constraints, neADMM. After introducing the generalized problem formulation and the neADMM algorithm, the convergence properties of neADMM are discussed, along with its sublinear convergence rate o(1/k)o(1/k), where kk is the number of iterations. Next, two important applications of neADMM are considered and the paper concludes by describing extensive experiments on several synthetic and real-world datasets to demonstrate the convergence and effectiveness of neADMM compared to existing state-of-the-art methods
    corecore