18,256 research outputs found

    Observers for compressible Navier-Stokes equation

    Full text link
    We consider a multi-dimensional model of a compressible fluid in a bounded domain. We want to estimate the density and velocity of the fluid, based on the observations for only velocity. We build an observer exploiting the symmetries of the fluid dynamics laws. Our main result is that for the linearised system with full observations of the velocity field, we can find an observer which converges to the true state of the system at any desired convergence rate for finitely many but arbitrarily large number of Fourier modes. Our one-dimensional numerical results corroborate the results for the linearised, fully observed system, and also show similar convergence for the full nonlinear system and also for the case when the velocity field is observed only over a subdomain

    SO(3)-invariant asymptotic observers for dense depth field estimation based on visual data and known camera motion

    Full text link
    In this paper, we use known camera motion associated to a video sequence of a static scene in order to estimate and incrementally refine the surrounding depth field. We exploit the SO(3)-invariance of brightness and depth fields dynamics to customize standard image processing techniques. Inspired by the Horn-Schunck method, we propose a SO(3)-invariant cost to estimate the depth field. At each time step, this provides a diffusion equation on the unit Riemannian sphere that is numerically solved to obtain a real time depth field estimation of the entire field of view. Two asymptotic observers are derived from the governing equations of dynamics, respectively based on optical flow and depth estimations: implemented on noisy sequences of synthetic images as well as on real data, they perform a more robust and accurate depth estimation. This approach is complementary to most methods employing state observers for range estimation, which uniquely concern single or isolated feature points.Comment: Submitte

    Locally adaptive image denoising by a statistical multiresolution criterion

    Full text link
    We demonstrate how one can choose the smoothing parameter in image denoising by a statistical multiresolution criterion, both globally and locally. Using inhomogeneous diffusion and total variation regularization as examples for localized regularization schemes, we present an efficient method for locally adaptive image denoising. As expected, the smoothing parameter serves as an edge detector in this framework. Numerical examples illustrate the usefulness of our approach. We also present an application in confocal microscopy

    High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: Comparison to experimental data and to amplitude growth model predictions

    Get PDF
    The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially nonoscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF6 shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical, and phenomenological linear and nonlinear, impulsive, perturbation, and potential flow models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The simulation amplitudes are shown to be in very good agreement with the experimental data and with the predictions of linear amplitude growth models for small times, and with those of nonlinear amplitude growth models at later times up to the time at which the driver-based expansion in the experiment (but not present in the simulations or models) expands the layer before reshock. The qualitative and quantitative differences between the fifth- and ninth-order simulation results are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn [Phys. Fluids 9, 1106 (1997)] nonlinear Padé model is shown to be in best overall agreement with the simulation amplitudes before reshock. The sensitivity of the amplitude growth model predictions to the initial growth rate from linear instability theory, the post-shock Atwood number and amplitude, and the velocity jump due to the passage of the shock through the interface is also investigated numerically

    Numerical Methods for the Fractional Laplacian: a Finite Difference-quadrature Approach

    Full text link
    The fractional Laplacian (−Δ)α/2(-\Delta)^{\alpha/2} is a non-local operator which depends on the parameter α\alpha and recovers the usual Laplacian as α→2\alpha \to 2. A numerical method for the fractional Laplacian is proposed, based on the singular integral representation for the operator. The method combines finite difference with numerical quadrature, to obtain a discrete convolution operator with positive weights. The accuracy of the method is shown to be O(h3−α)O(h^{3-\alpha}). Convergence of the method is proven. The treatment of far field boundary conditions using an asymptotic approximation to the integral is used to obtain an accurate method. Numerical experiments on known exact solutions validate the predicted convergence rates. Computational examples include exponentially and algebraically decaying solution with varying regularity. The generalization to nonlinear equations involving the operator is discussed: the obstacle problem for the fractional Laplacian is computed.Comment: 29 pages, 9 figure
    • …
    corecore