9,851 research outputs found

    SR-GCL: Session-Based Recommendation with Global Context Enhanced Augmentation in Contrastive Learning

    Full text link
    Session-based recommendations aim to predict the next behavior of users based on ongoing sessions. The previous works have been modeling the session as a variable-length of a sequence of items and learning the representation of both individual items and the aggregated session. Recent research has applied graph neural networks with an attention mechanism to capture complicated item transitions and dependencies by modeling the sessions into graph-structured data. However, they still face fundamental challenges in terms of data and learning methodology such as sparse supervision signals and noisy interactions in sessions, leading to sub-optimal performance. In this paper, we propose SR-GCL, a novel contrastive learning framework for a session-based recommendation. As a crucial component of contrastive learning, we propose two global context enhanced data augmentation methods while maintaining the semantics of the original session. The extensive experiment results on two real-world E-commerce datasets demonstrate the superiority of SR-GCL as compared to other state-of-the-art methods.Comment: 11 pages. This paper has been accepted by DLG-AAAI'2

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Sequential Recommendation with Self-Attentive Multi-Adversarial Network

    Full text link
    Recently, deep learning has made significant progress in the task of sequential recommendation. Existing neural sequential recommenders typically adopt a generative way trained with Maximum Likelihood Estimation (MLE). When context information (called factor) is involved, it is difficult to analyze when and how each individual factor would affect the final recommendation performance. For this purpose, we take a new perspective and introduce adversarial learning to sequential recommendation. In this paper, we present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation. Specifically, our proposed MFGAN has two kinds of modules: a Transformer-based generator taking user behavior sequences as input to recommend the possible next items, and multiple factor-specific discriminators to evaluate the generated sub-sequence from the perspectives of different factors. To learn the parameters, we adopt the classic policy gradient method, and utilize the reward signal of discriminators for guiding the learning of the generator. Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time. Extensive experiments conducted on three real-world datasets demonstrate the superiority of our proposed model over the state-of-the-art methods, in terms of effectiveness and interpretability

    Large Language Models for Intent-Driven Session Recommendations

    Full text link
    Intent-aware session recommendation (ISR) is pivotal in discerning user intents within sessions for precise predictions. Traditional approaches, however, face limitations due to their presumption of a uniform number of intents across all sessions. This assumption overlooks the dynamic nature of user sessions, where the number and type of intentions can significantly vary. In addition, these methods typically operate in latent spaces, thus hinder the model's transparency.Addressing these challenges, we introduce a novel ISR approach, utilizing the advanced reasoning capabilities of large language models (LLMs). First, this approach begins by generating an initial prompt that guides LLMs to predict the next item in a session, based on the varied intents manifested in user sessions. Then, to refine this process, we introduce an innovative prompt optimization mechanism that iteratively self-reflects and adjusts prompts. Furthermore, our prompt selection module, built upon the LLMs' broad adaptability, swiftly selects the most optimized prompts across diverse domains. This new paradigm empowers LLMs to discern diverse user intents at a semantic level, leading to more accurate and interpretable session recommendations. Our extensive experiments on three real-world datasets demonstrate the effectiveness of our method, marking a significant advancement in ISR systems

    Spatio-Temporal Contrastive Learning Enhanced GNNs for Session-based Recommendation

    Full text link
    Session-based recommendation (SBR) systems aim to utilize the user's short-term behavior sequence to predict the next item without the detailed user profile. Most recent works try to model the user preference by treating the sessions as between-item transition graphs and utilize various graph neural networks (GNNs) to encode the representations of pair-wise relations among items and their neighbors. Some of the existing GNN-based models mainly focus on aggregating information from the view of spatial graph structure, which ignores the temporal relations within neighbors of an item during message passing and the information loss results in a sub-optimal problem. Other works embrace this challenge by incorporating additional temporal information but lack sufficient interaction between the spatial and temporal patterns. To address this issue, inspired by the uniformity and alignment properties of contrastive learning techniques, we propose a novel framework called Session-based Recommendation with Spatio-Temporal Contrastive Learning Enhanced GNNs (RESTC). The idea is to supplement the GNN-based main supervised recommendation task with the temporal representation via an auxiliary cross-view contrastive learning mechanism. Furthermore, a novel global collaborative filtering graph (CFG) embedding is leveraged to enhance the spatial view in the main task. Extensive experiments demonstrate the significant performance of RESTC compared with the state-of-the-art baselines e.g., with an improvement as much as 27.08% gain on HR@20 and 20.10% gain on [email protected]: Under reviewing draft of ACM TOI
    corecore