3,097,071 research outputs found

    The gravitational field of a global monopole

    Full text link
    We present an exact solution to the non-linear equation which describes a global monopole in the flat space. We re-examine the metric and the geodesics outside the global monopole. We will see that a global monopole produces a repulsive gravitational field outside the core in addition to a solid angular deficit. The lensing property of the global monopole and the global monopole-antimonopole annihilation mechanism are studied.Comment: 8 pages, no figure

    Global effects in quaternionic quantum field theory

    Full text link
    We present some striking global consequences of a model quaternionic quantum field theory which is locally complex. We show how making the quaternionic structure a dynamical quantity naturally leads to the prediction of cosmic strings and non-baryonic hot dark matter candidates.Comment: 11 pages, no figures, revte

    Mean field theory for global binding systematics

    Full text link
    We review some possible improvements of mean field theory for application to nuclear binding systematics. Up to now, microscopic theory has been less successful than models starting from the liquid drop in describing accurately the global binding systematics. We believe that there are good prospects to develop a better global theory, using modern forms of energy density functionals and treating correlation energies systematically by the RPA.Comment: RevTex, 17 pages, 5 eps figures. To be published in Yadernaya Fizika, special edition for the 90th birthday of Professor A.B. Migda

    Magnetic field structure due to the global velocity field in spiral galaxies

    Full text link
    We present a set of global, self-consistent N-body/SPH simulations of the dynamic evolution of galactic discs with gas and including magnetic fields. We have implemented a description to follow the evolution of magnetic fields with the ideal induction equation in the SPH part of the Vine code. Results from a direct implementation of the field equations are compared to a representation by Euler potentials, which pose a div(B)-free description, an constraint not fulfilled for the direct implementation. All simulations are compared to an implementation of magnetic fields in the Gadget code which includes also cleaning methods for div(B). Starting with a homogeneous seed field we find that by differential rotation and spiral structure formation of the disc the field is amplified by one order of magnitude within five rotation periods of the disc. The amplification is stronger for higher numerical resolution. Moreover, we find a tight connection of the magnetic field structure to the density pattern of the galaxy in our simulations, with the magnetic field lines being aligned with the developing spiral pattern of the gas. Our simulations clearly show the importance of non-axisymmetry for the evolution of the magnetic field.Comment: 17 pages, 18 figure

    Mixed global anomalies and boundary conformal field theories

    Full text link
    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal boundary state invariant under the action of the center. This also gives conditions on the levels of WZW models. By considering the combined action of the center and charge conjugation on boundary states, we reproduce the condition obtained in the orbifold analysis.Comment: 24pages, 1 figure, references adde

    Quantum global vortex strings in a background field

    Full text link
    We consider quantum global vortex string correlation functions, within the Kalb-Ramond framework, in the presence of a background field-strength tensor and investigate the conditions under which this yields a nontrivial contribution to those correlation functions. We show that a background field must be supplemented to the Kalb-Ramond theory, in order to correctly describe the quantum properties of the vortex strings. The explicit form of this background field and the associated quantum vortex string correlation function are derived. The complete expression for the quantum vortex creation operator is explicitly obtained. We discuss the potential applicability of our results in the physics of superfluids and rotating Bose-Einstein condensates.Comment: To appear in Journal of Physics A: Mathematical and Genera

    Tame Class Field Theory for Global Function Fields

    Full text link
    We give a function field specific, algebraic proof of the main results of class field theory for abelian extensions of degree coprime to the characteristic. By adapting some methods known for number fields and combining them in a new way, we obtain a different and much simplified proof, which builds directly on a standard basic knowledge of the theory of function fields. Our methods are explicit and constructive and thus relevant for algorithmic applications. We use generalized forms of the Tate-Lichtenbaum and Ate pairings, which are well-known in cryptography, as an important tool.Comment: 25 pages, to appear in Journal of Number Theor
    • …