523,960 research outputs found

    Fossil Glasses Produced by Impact of Meteorites, Asteroids and Possibly Comets with the Planet Earth

    Get PDF
    In recent times one of the most intriguing mysteries of geology bas been the occurrence of aerodynamically-shaped glasses on five continents of the earth. These glasses under discussion are obviously not of fulgurite origin. Recent research indicates that these glasses known as tektites are ~he result of meteorite, asteroid, or possibly comet impact. Impact glasses, in general, differ from volcanic glasses in that they are lower in water content, have lower gallium and germanium contents, and are not necessarily in magmatically unstable continental areas

    Fast generation of ultrastable computer glasses by minimization of an augmented potential energy

    Get PDF
    We present a model and protocol that enable the generation of extremely stable computer glasses at minimal computational cost. The protocol consists of an instantaneous quench in an augmented potential energy landscape, with particle radii as additional degrees of freedom. We demonstrate how our glasses' mechanical stability, which is readily tunable in our approach, is reflected both in microscopic and macroscopic observables. Our observations indicate that the stability of our computer glasses is at least comparable to that of computer glasses generated by the celebrated Swap Monte Carlo algorithm. Strikingly, some key properties support even qualitatively enhanced stability in our scheme: the density of quasilocalized excitations displays a gap in our most stable computer glasses, whose magnitude scales with the polydispersity of the particles. We explain this observation, which is consistent with the lack of plasticity we observe at small stress. It also suggests that these glasses are depleted from two-level systems, similarly to experimental vapor-deposited ultrastable glasses.Comment: 11 pages, 10 figure

    Self- generated disorder and structural glass formation in homopolymer globules

    Full text link
    We have investigated the interrelation between the spin glasses and the structural glasses. Spin glasses in this case are random magnets without reflection symmetry (e.g. pp - spin interaction spin glasses and Potts glasses) which contain quenched disorder, whereas the structural glasses are here exemplified by the homopolymeric globule, which can be viewed as a liquid of connected molecules on nano scales. It is argued that the homopolymeric globule problem can be mapped onto a disorder field theoretical model whose effective Hamiltonian resembles the corresponding one for the spin glass model. In this sense the disorder in the globule is self - generated (in contrast to spin glasses) and can be related with competitive interactions (virial coefficients of different signs) and the chain connectivity. The work is aimed at giving a quantitative description of this analogy. We have investigated the phase diagram of the homopolymeric globule where the transition line from the liquid to glassy globule is treated in terms of the replica symmetry breaking paradigm. The configurational entropy temperature dependence is also discussed.Comment: 22 pages, 4 figures, submitted to Phys. Rev.

    A Structural Comparison of Ordered and Non-Ordered Ion Doped Silicate Bioactive Glasses

    Get PDF
    One of the key benefits of sol-gel-derived glasses is the presence of a mesoporous structure and the resulting increase in surface area. This enhancement in textural properties has a significant e ect on the physicochemical properties of the materials. In this context the aim of this study was to investigate how sol-gel synthesis parameters can influence the textural and structural properties of mesoporous silicate glasses. We report the synthesis and characterization of metal ion doped sol-gel derived glasses with di erent dopants in the presence or absence of a surfactant (Pluronic P123) used as structure-directing templating agent. Characterization was done by several methods. Using a structure directing agent led to larger surface areas and highly ordered mesoporous structures. The chemical structure of the non-ordered glasses was modified to a larger extent than the one of the ordered glasses due to increased incorporation of dopant ions into the glass network. The results will help to further understand how the properties of sol-gel glasses can be controlled by incorporation of metal dopants, in conjunction with control over the textural properties, and will be important to optimize the properties of sol-gel glasses for specific applications, e.g., drug delivery, bone regeneration, wound healing, and antibacterial materials.European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 643050, project “HyMedPoly
    corecore