1,864 research outputs found

    From here to infinity - sparse finite versus Dirichlet process mixtures in model-based clustering

    Get PDF
    In model-based-clustering mixture models are used to group data points into clusters. A useful concept introduced for Gaussian mixtures by Malsiner Walli et al (2016) are sparse finite mixtures, where the prior distribution on the weight distribution of a mixture with KK components is chosen in such a way that a priori the number of clusters in the data is random and is allowed to be smaller than KK with high probability. The number of cluster is then inferred a posteriori from the data. The present paper makes the following contributions in the context of sparse finite mixture modelling. First, it is illustrated that the concept of sparse finite mixture is very generic and easily extended to cluster various types of non-Gaussian data, in particular discrete data and continuous multivariate data arising from non-Gaussian clusters. Second, sparse finite mixtures are compared to Dirichlet process mixtures with respect to their ability to identify the number of clusters. For both model classes, a random hyper prior is considered for the parameters determining the weight distribution. By suitable matching of these priors, it is shown that the choice of this hyper prior is far more influential on the cluster solution than whether a sparse finite mixture or a Dirichlet process mixture is taken into consideration.Comment: Accepted versio

    Estimation of a 3D motion field from a multi-camera array using a multiresolution Gaussian mixture model

    Get PDF
    The problem of modelling geometry for video based rendering has been much studied in recent years, due to the growing interest in 'free viewpoint' video and similar applications. Common approaches fall into two categories: those which approximate surfaces from dense depth maps obtained by generalisations of stereopsis and those which employ an explicit geometric representation such as a mesh. While the former have generality with respect to geometry, they are limited in terms of viewpoint; the latter, on the other hand, sacrifice generality of geometry for freedom to pick an arbitary viewpoint. The purpose of the work reported here is to bridge this gap in object representation, by employing a stochastic model of object structure: a multiresolution Gaussian mixture. Estimation of the model and tracking it through time from multiple cameras is achieved by a multiresolution stochastic simulation. After a brief outline of the method, its use in modelling human motion using data from local and other sources is presented to illustrate its effectiveness compared to the current state of the art
    corecore