4 research outputs found

    Flights in my hands : coherence concerns in designing Strip'TIC, a tangible space for air traffic controllers

    Get PDF
    Best Paper Honorable Mention awardInternational audienceWe reflect upon the design of a paper-based tangible interactive space to support air traffic control. We have observed, studied, prototyped and discussed with controllers a new mixed interaction system based on Anoto, video projection, and tracking. Starting from the understanding of the benefits of tangible paper strips, our goal is to study how mixed physical and virtual augmented data can support the controllers' mental work. The context of the activity led us to depart from models that are proposed in tangible interfaces research where coherence is based on how physical objects are representative of virtual objects. We propose a new account of coherence in a mixed interaction system that integrates externalization mechanisms. We found that physical objects play two roles: they act both as representation of mental objects and as tangible artifacts for interacting with augmented features. We observed that virtual objects represent physical ones, and not the reverse, and, being virtual representations of physical objects, should seamlessly converge with the cognitive role of the physical object. Finally, we show how coherence is achieved by providing a seamless interactive space

    Strip-TIC : exploring augmented paper strips for Air Traffic Controllers

    Get PDF
    International audienceThe current environment used by French air traffic controllers mixes digital visualization such as radar screens and tangible artifacts such as paper strips. Tangible artifacts do not allow controllers to update the system with the instructions they give to pilots. Previous attempts at replacing them in France failed to prove efficient. This paper is an engineering paper that describes Strip-TIC, a novel system for ATC that mixes augmented paper and digital pen, vision-based tracking and augmented rear and front projection. The system is now working and has enabled us to run workshops with actual controllers to study the role of writing and tangibility in ATC. We describe the system and solutions to technical challenges due to mixing competing technologies

    Contributions to the science of controlled transformation

    Get PDF
    writing completed in april 2013My research activities pertain to "Informatics" and in particular "Interactive Graphics" i.e. dynamic graphics on a 2D screen that a user can interact with by means of input devices such as a mouse or a multitouch surface. I have conducted research on Interactive Graphics along three themes: interactive graphics development (how should developers design the architecture of the code corresponding to graphical interactions?), interactive graphic design (what graphical interactions should User Experience (UX) specialists use in their system?) and interactive graphics design process (how should UX specialists design? Which method should they apply?) I invented the MDPC architecture that relies on Picking views and Inverse transforms. This improves the modularity of programs and improves the usability of the specification and the implementation of interactive graphics thanks to the simplification of description. In order to improve the performance of rich-graphic software using this architecture, I explored the concepts of graphical compilers and led a PhD thesis on the topic. The thesis explored the approach and contributed both in terms of description simplification and of software engineering facilitation. Finally, I have applied the simplification of description principles to the problem of shape covering avoidance by relying on new efficient hardware support for parallelized and memory-based algorithms. Together with my colleagues, we have explored the design and assessment of expanding targets, animation and sound, interaction with numerous tangled trajectories, multi-user interaction and tangible interaction. I have identified and defined Structural Interaction, a new interaction paradigm that follows the steps of the direct and instrumental interaction paradigms. I directed a PhD thesis on this topic and together with my student we designed and assessed interaction techniques for structural interaction. I was involved in the design of the "Technology Probes" concept i.e. runnable prototypes to feed the design process. Together with colleagues, I designed VideoProbe, one such Technology Probe. I became interested in more conceptual tools targeted at graphical representation. I led two PhD theses on the topic and explored the characterization of visualization, how to design representations with visual variables or ecological perception and how to design visual interfaces to improve visual scanning. I discovered that those conceptual tools could be applied to programming languages and showed how the representation of code, be it textual or "visual" undergoes visual perception phenomena. This has led me to consider our discipline as the "Science of Controlled Transformations". The fifth chapter is an attempt at providing this new account of "Informatics" based on what users, programmers and researchers actually do with interactive systems. I also describe how my work can be considered as contributing to the science of controlled transformations
    corecore