11,045 research outputs found

    Use of human gestures for controlling a mobile robot via adaptive CMAC network and fuzzy logic controller

    Get PDF
    Mobile robots with manipulators have been more and more commonly applied in extreme and hostile environments to assist or even replace human operators for complex tasks. In addition to autonomous abilities, mobile robots need to facilitate the human–robot interaction control mode that enables human users to easily control or collaborate with robots. This paper proposes a system which uses human gestures to control an autonomous mobile robot integrating a manipulator and a video surveillance platform. A human user can control the mobile robot just as one drives an actual vehicle in the vehicle’s driving cab. The proposed system obtains human’s skeleton joints information using a motion sensing input device, which is then recognized and interpreted into a set of control commands. This is implemented, based on the availability of training data set and requirement of in-time performance, by an adaptive cerebellar model articulation controller neural network, a finite state machine, a fuzzy controller and purposely designed gesture recognition and control command generation systems. These algorithms work together implement the steering and velocity control of the mobile robot in real-time. The experimental results demonstrate that the proposed approach is able to conveniently control a mobile robot using virtual driving method, with smooth manoeuvring trajectories in various speeds

    Gesture Recognition Aplication based on Dynamic Time Warping (DTW) FOR Omni-Wheel Mobile Robot

    Get PDF
    This project presents of the movement of omni-wheel robot moves in the trajectory obtained from the gesture recognition system based on Dynamic Time Warping. Single camera is used as the input of the system, which is also a reference to the movement of the omni-wheel robot. Some systems for gesture recognition have been developed using various methods and different approaches. The movement of the omni-wheel robot using the method of Dynamic Time Wrapping (DTW) which has the advantage able to calculate the distance of two data vectors with different lengths. By using this method we can measure the similarity between two sequences at different times and speeds. Dynamic Time Warping to compare the two parameters at varying times and speeds. Application of DTW widely applied in video, audio, graphics, etc. Due to data that can be changed in a linear manner so that it can be analyzed with DTW. In short can find the most suitable value by minimizing the difference between two multidimensional signals that have been compressed. DTW method is expected to gesture recognition system to work optimally, have a high enough value of accuracy and processing time is realtime

    A Low-Cost Tele-Presence Wheelchair System

    Full text link
    This paper presents the architecture and implementation of a tele-presence wheelchair system based on tele-presence robot, intelligent wheelchair, and touch screen technologies. The tele-presence wheelchair system consists of a commercial electric wheelchair, an add-on tele-presence interaction module, and a touchable live video image based user interface (called TIUI). The tele-presence interaction module is used to provide video-chatting for an elderly or disabled person with the family members or caregivers, and also captures the live video of an environment for tele-operation and semi-autonomous navigation. The user interface developed in our lab allows an operator to access the system anywhere and directly touch the live video image of the wheelchair to push it as if he/she did it in the presence. This paper also discusses the evaluation of the user experience

    User evaluation of an interactive learning framework for single-arm and dual-arm robots

    Get PDF
    The final publication is available at link.springer.comSocial robots are expected to adapt to their users and, like their human counterparts, learn from the interaction. In our previous work, we proposed an interactive learning framework that enables a user to intervene and modify a segment of the robot arm trajectory. The framework uses gesture teleoperation and reinforcement learning to learn new motions. In the current work, we compared the user experience with the proposed framework implemented on the single-arm and dual-arm Barrett’s 7-DOF WAM robots equipped with a Microsoft Kinect camera for user tracking and gesture recognition. User performance and workload were measured in a series of trials with two groups of 6 participants using two robot settings in different order for counterbalancing. The experimental results showed that, for the same task, users required less time and produced shorter robot trajectories with the single-arm robot than with the dual-arm robot. The results also showed that the users who performed the task with the single-arm robot first experienced considerably less workload in performing the task with the dual-arm robot while achieving a higher task success rate in a shorter time.Peer ReviewedPostprint (author's final draft
    • …
    corecore