2 research outputs found

    What and Where: Modeling Skeletons from Semantic and Spatial Perspectives for Action Recognition

    Full text link
    Skeleton data, which consists of only the 2D/3D coordinates of the human joints, has been widely studied for human action recognition. Existing methods take the semantics as prior knowledge to group human joints and draw correlations according to their spatial locations, which we call the semantic perspective for skeleton modeling. In this paper, in contrast to previous approaches, we propose to model skeletons from a novel spatial perspective, from which the model takes the spatial location as prior knowledge to group human joints and mines the discriminative patterns of local areas in a hierarchical manner. The two perspectives are orthogonal and complementary to each other; and by fusing them in a unified framework, our method achieves a more comprehensive understanding of the skeleton data. Besides, we customized two networks for the two perspectives. From the semantic perspective, we propose a Transformer-like network that is expert in modeling joint correlations, and present three effective techniques to adapt it for skeleton data. From the spatial perspective, we transform the skeleton data into the sparse format for efficient feature extraction and present two types of sparse convolutional networks for sparse skeleton modeling. Extensive experiments are conducted on three challenging datasets for skeleton-based human action/gesture recognition, namely, NTU-60, NTU-120 and SHREC, where our method achieves state-of-the-art performance

    Decoupled Spatial-Temporal Attention Network for Skeleton-Based Action Recognition

    Full text link
    Dynamic skeletal data, represented as the 2D/3D coordinates of human joints, has been widely studied for human action recognition due to its high-level semantic information and environmental robustness. However, previous methods heavily rely on designing hand-crafted traversal rules or graph topologies to draw dependencies between the joints, which are limited in performance and generalizability. In this work, we present a novel decoupled spatial-temporal attention network(DSTA-Net) for skeleton-based action recognition. It involves solely the attention blocks, allowing for modeling spatial-temporal dependencies between joints without the requirement of knowing their positions or mutual connections. Specifically, to meet the specific requirements of the skeletal data, three techniques are proposed for building attention blocks, namely, spatial-temporal attention decoupling, decoupled position encoding and spatial global regularization. Besides, from the data aspect, we introduce a skeletal data decoupling technique to emphasize the specific characteristics of space/time and different motion scales, resulting in a more comprehensive understanding of the human actions.To test the effectiveness of the proposed method, extensive experiments are conducted on four challenging datasets for skeleton-based gesture and action recognition, namely, SHREC, DHG, NTU-60 and NTU-120, where DSTA-Net achieves state-of-the-art performance on all of them
    corecore