2,477 research outputs found

    New approach for fabrication germanene with Dirac electrons preserved: A first principle study

    Full text link
    How to obtain germanene with Dirac electrons preserved is still an open challenge. Here we report a sandwich-dehydrogenation approach, i.e., to fabricate germanene through dehydrogenating germanane in a sandwiched structure. The dehydrogenation can spontaneously occur for the sandwiched structure, which overcomes the problem of amorphization in the heating dehydrogenation approach. The obtained germanene preserve the Dirac electronic properties very well. Moreover, the Fermi velocity of germanene can be efficiently manipulated through controlling the interlayer spacing between germanane and the sandwiching surfaces. Our results indicate a guideline for fabrication of prefect two-dimensional materials.Comment: 23 pages,6 figure

    New Phases of Germanene

    Get PDF
    Germanene, a graphene like single layer structure of Ge, has been shown to be stable and recently grown on Pt and Au substrates. We show that a Ge adatom adsorbed to germanene pushes down the host Ge atom underneath and forms a dumbbell structure. This exothermic process occurs spontaneously. The attractive dumbbell-dumbbell interaction favors high coverage of dumbbells. This letter heralds stable new phases of germanene, which are constructed from periodically repeating coverage of dumbbell structures and display diversity of electronic and magnetic properties.Comment: Published in JPCL http://pubs.acs.org/doi/abs/10.1021/jz500977

    Effects of charging and electric field on the properties of silicene and germanene

    Get PDF
    Using first-principles Density Functional Theory calculations, we showed that electronic and magnetic properties of bare and Ti adatom adsorbed single-layer silicene and germanene, which are charged or exerted by a perpendicular electric field are modified to attain new functionalities. In particular, when exerted by a perpendicular electric field, the symmetry between the planes of buckled atoms is broken to open a gap at the Dirac points. The occupation of 3d-orbitals of adsorbed Ti atom changes with charging or applied electric field to induce significant changes of magnetic moment. We predict that neutral silicene uniformly covered by Ti atoms becomes a half-metal at a specific value of coverage and hence allows the transport of electrons in one spin direction, but blocks the opposite direction. These calculated properties, however exhibit a dependence on the size of the vacuum spacing between periodically repeating silicene and germanene layers, if they are treated using plane wave basis set within periodic boundary condition. We clarified the cause of this spurious dependence and show that it can be eliminated by the use of local orbital basis set.Comment: Accepted for Journal of Physics: Condensed Matte

    Stability of germanene under tensile strain

    Full text link
    The stability of germanene under biaxial tensile strain and the accompanying modifications of the electronic properties are studied by density functional theory. The phonon spectrum shows that up to 16%16\% strain the germanene lattice is stable, where the Dirac cone shifts towards higher energy and hole-doped Dirac states are achieved. The latter is due to weakening of the Ge-Ge bonds and reduction of the s-p hybridization. Our calculated Gr\"uneisen parameter shows a similar dependence on the strain as reported for silicene (which is different from that of graphene).Comment: 11 pages, 3 figures, and 1 Tabl

    Germanene: a novel two-dimensional Germanium allotrope akin to Graphene and Silicene

    Get PDF
    Using a gold (111) surface as a substrate we have grown in situ by molecular beam epitaxy an atom-thin, ordered, two-dimensional multi-phase film. Its growth bears strong similarity with the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in Scanning Tunneling Microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced Density Functional Theory calculations we can identify it to a 3\sqrt{3}x3\sqrt{3}R(30{\deg}) germanene layer in coincidence with a 7\sqrt{7}x7\sqrt{7}R(19.1{\deg}) Au(111) supercell, thence, presenting the first compelling evidence of the birth of a novel synthetic germanium-based cousin of graphene.Comment: 16 pages, 4 figures, 1 tabl
    corecore