6,239 research outputs found

    Optimization Based Self-localization for IoT Wireless Sensor Networks

    Get PDF
    In this paper we propose an embedded optimization framework for the simultaneous self-localization of all sensors in wireless sensor networks making use of range measurements from ultra-wideband (UWB) signals. Low-power UWB radios, which provide time-of-arrival measurements with decimeter accuracy over large distances, have been increasingly envisioned for realtime localization of IoT devices in GPS-denied environments and large sensor networks. In this work, we therefore explore different non-linear least-squares optimization problems to formulate the localization task based on UWB range measurements. We solve the resulting optimization problems directly using non-linear-programming algorithms that guarantee convergence to locally optimal solutions. This optimization framework allows the consistent comparison of different optimization methods for sensor localization. We propose and demonstrate the best optimization approach for the self-localization of sensors equipped with off-the-shelf microcontrollers using state-of-the-art code generation techniques for the plug-and-play deployment of the optimal localization algorithm. Numerical results indicate that the proposed approach improves localization accuracy and decreases computation times relative to existing iterative methods

    People-Sensing Spatial Characteristics of RF Sensor Networks

    Full text link
    An "RF sensor" network can monitor RSS values on links in the network and perform device-free localization, i.e., locating a person or object moving in the area in which the network is deployed. This paper provides a statistical model for the RSS variance as a function of the person's position w.r.t. the transmitter (TX) and receiver (RX). We show that the ensemble mean of the RSS variance has an approximately linear relationship with the expected total affected power (ETAP). We then use analysis to derive approximate expressions for the ETAP as a function of the person's position, for both scattering and reflection. Counterintuitively, we show that reflection, not scattering, causes the RSS variance contours to be shaped like Cassini ovals. Experimental tests reported here and in past literature are shown to validate the analysis

    Design of Combined Coverage Area Reporting and Geo-casting of Queries for Wireless Sensor Networks

    Get PDF
    In order to efficiently deal with queries or other location dependent information, it is key that the wireless sensor network informs gateways what geographical area is serviced by which gateway. The gateways are then able to e.g. efficiently route queries which are only valid in particular regions of the deployment. The proposed algorithms combine coverage area reporting and geographical routing of queries which are injected by gateways.\u

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation
    • …
    corecore