1,061 research outputs found

    Combinatorics and Geometry of Transportation Polytopes: An Update

    Full text link
    A transportation polytope consists of all multidimensional arrays or tables of non-negative real numbers that satisfy certain sum conditions on subsets of the entries. They arise naturally in optimization and statistics, and also have interest for discrete mathematics because permutation matrices, latin squares, and magic squares appear naturally as lattice points of these polytopes. In this paper we survey advances on the understanding of the combinatorics and geometry of these polyhedra and include some recent unpublished results on the diameter of graphs of these polytopes. In particular, this is a thirty-year update on the status of a list of open questions last visited in the 1984 book by Yemelichev, Kovalev and Kravtsov and the 1986 survey paper of Vlach.Comment: 35 pages, 13 figure

    Polytopes associated to Dihedral Groups

    Full text link
    In this note we investigate the convex hull of those n×nn \times n-permutation matrices that correspond to symmetries of a regular nn-gon. We give the complete facet description. As an application, we show that this yields a Gorenstein polytope, and we determine the Ehrhart h∗h^*-vector

    Plethysm and lattice point counting

    Full text link
    We apply lattice point counting methods to compute the multiplicities in the plethysm of GL(n)GL(n). Our approach gives insight into the asymptotic growth of the plethysm and makes the problem amenable to computer algebra. We prove an old conjecture of Howe on the leading term of plethysm. For any partition μ\mu of 3,4, or 5 we obtain an explicit formula in λ\lambda and kk for the multiplicity of SλS^\lambda in Sμ(Sk)S^\mu(S^k).Comment: 25 pages including appendix, 1 figure, computational results and code available at http://thomas-kahle.de/plethysm.html, v2: various improvements, v3: final version appeared in JFoC

    Neighborly inscribed polytopes and Delaunay triangulations

    Get PDF
    We construct a large family of neighborly polytopes that can be realized with all the vertices on the boundary of any smooth strictly convex body. In particular, we show that there are superexponentially many combinatorially distinct neighborly polytopes that admit realizations inscribed on the sphere. These are the first examples of inscribable neighborly polytopes that are not cyclic polytopes, and provide the current best lower bound for the number of combinatorial types of inscribable polytopes (which coincides with the current best lower bound for the number of combinatorial types of polytopes). Via stereographic projections, this translates into a superexponential lower bound for the number of combinatorial types of (neighborly) Delaunay triangulations.Comment: 15 pages, 2 figures. We extended our results to arbitrary smooth strictly convex bodie
    • …
    corecore