4 research outputs found

    Automatic Generation of Geometrically Parameterized Reduced Order Models for Integrated Spiral RF-Inductors

    Get PDF
    In this paper we describe an approach to generating low-order models of spiral inductors that accurately capture the dependence on both frequency and geometry (width and spacing) parameters. The approach is based on adapting a multiparameter Krylov-subspace based moment matching method to reducing an integral equation for the three dimensional electromagnetic behavior of the spiral inductor. The approach is demonstrated on a typical on-chip rectangular inductor.Singapore-MIT Alliance (SMA

    Tensor Computation: A New Framework for High-Dimensional Problems in EDA

    Get PDF
    Many critical EDA problems suffer from the curse of dimensionality, i.e. the very fast-scaling computational burden produced by large number of parameters and/or unknown variables. This phenomenon may be caused by multiple spatial or temporal factors (e.g. 3-D field solvers discretizations and multi-rate circuit simulation), nonlinearity of devices and circuits, large number of design or optimization parameters (e.g. full-chip routing/placement and circuit sizing), or extensive process variations (e.g. variability/reliability analysis and design for manufacturability). The computational challenges generated by such high dimensional problems are generally hard to handle efficiently with traditional EDA core algorithms that are based on matrix and vector computation. This paper presents "tensor computation" as an alternative general framework for the development of efficient EDA algorithms and tools. A tensor is a high-dimensional generalization of a matrix and a vector, and is a natural choice for both storing and solving efficiently high-dimensional EDA problems. This paper gives a basic tutorial on tensors, demonstrates some recent examples of EDA applications (e.g., nonlinear circuit modeling and high-dimensional uncertainty quantification), and suggests further open EDA problems where the use of tensor computation could be of advantage.Comment: 14 figures. Accepted by IEEE Trans. CAD of Integrated Circuits and System

    Geometrically parameterized interconnect performance models for interconnect synthesis

    No full text
    In this paper we describe an approach for generating geometricallyparameterized integrated-circuit interconnect models that are efficient enough for use in interconnect synthesis. The model generation approach presented is automatic, and is based on a multiparameter model-reduction algorithm. The effectiveness of the technique is tested using a multi-line bus example, where both wire spacing and wire width are considered as geometric parameters. Experimental results demonstrate that the generated models accurately predict both delay and cross-talk effects over a wide range of spacing and width variation

    Geometrically Parameterized Interconnect Performance Models for Interconnect Synthesis

    No full text
    In this paper we describe an approach for generating geometricallyparameterized integrated-circuit interconnect models that are efficient enough for use in interconnect synthesis. The model generation approach presented is automatic, and is based on a multiparameter model-reduction algorithm. The effectiveness of the technique is tested using a multi-line bus example, where both wire spacing and wire width are considered as geometric parameters. Experimental results demonstrate that the generated models accurately predict both delay and cross-talk effects over a wide range of spacing and width variation
    corecore