3 research outputs found

    MIG Median Detectors with Manifold Filter

    Full text link
    In this paper, we propose a class of median-based matrix information geometry (MIG) detectors with a manifold filter and apply them to signal detection in nonhomogeneous environments. As customary, the sample data is assumed to be modeled as Hermitian positive-definite (HPD) matrices, and the geometric median of a set of HPD matrices is interpreted as an estimate of the clutter covariance matrix (CCM). Then, the problem of signal detection can be reformulated as discriminating two points on the manifold of HPD matrices, one of which is the HPD matrix in the cell under test while the other represents the CCM. By manifold filter, we map a set of HPD matrices to another set of HPD matrices by weighting them, that consequently improves the discriminative power by reducing the intra-class distances while increasing the inter-class distances. Three MIG median detectors are designed by resorting to three geometric measures on the matrix manifold, and the corresponding geometric medians are shown to be robust to outliers. Numerical simulations show the advantage of the proposed MIG median detectors in comparison with their state-of-the-art counterparts as well as the conventional detectors in nonhomogeneous environments.Comment: 22 pages, 12 figure

    Target Detection within Nonhomogeneous Clutter via Total Bregman Divergence-Based Matrix Information Geometry Detectors

    Full text link
    Information divergences are commonly used to measure the dissimilarity of two elements on a statistical manifold. Differentiable manifolds endowed with different divergences may possess different geometric properties, which can result in totally different performances in many practical applications. In this paper, we propose a total Bregman divergence-based matrix information geometry (TBD-MIG) detector and apply it to detect targets emerged into nonhomogeneous clutter. In particular, each sample data is assumed to be modeled as a Hermitian positive-definite (HPD) matrix and the clutter covariance matrix is estimated by the TBD mean of a set of secondary HPD matrices. We then reformulate the problem of signal detection as discriminating two points on the HPD matrix manifold. Three TBD-MIG detectors, referred to as the total square loss, the total log-determinant and the total von Neumann MIG detectors, are proposed, and they can achieve great performances due to their power of discrimination and robustness to interferences. Simulations show the advantage of the proposed TBD-MIG detectors in comparison with the geometric detector using an affine invariant Riemannian metric as well as the adaptive matched filter in nonhomogeneous clutter.Comment: 15 pages, 8 figure

    BrePartition: Optimized High-Dimensional kNN Search with Bregman Distances

    Full text link
    Bregman distances (also known as Bregman divergences) are widely used in machine learning, speech recognition and signal processing, and kNN searches with Bregman distances have become increasingly important with the rapid advances of multimedia applications. Data in multimedia applications such as images and videos are commonly transformed into space of hundreds of dimensions. Such high-dimensional space has posed significant challenges for existing kNN search algorithms with Bregman distances, which could only handle data of medium dimensionality (typically less than 100). This paper addresses the urgent problem of high-dimensional kNN search with Bregman distances. We propose a novel partition-filter-refinement framework. Specifically, we propose an optimized dimensionality partitioning scheme to solve several non-trivial issues. First, an effective bound from each partitioned subspace to obtain exact kNN results is derived. Second, we conduct an in-depth analysis of the optimized number of partitions and devise an effective strategy for partitioning. Third, we design an efficient integrated index structure for all the subspaces together to accelerate the search processing. Moreover, we extend our exact solution to an approximate version by a trade-off between the accuracy and efficiency. Experimental results on four real-world datasets and two synthetic datasets show the clear advantage of our method in comparison to state-of-the-art algorithms
    corecore