201 research outputs found

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    Non-crossing frameworks with non-crossing reciprocals

    Full text link
    We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the self-stress; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that if such an embedding is sufficiently generic, then the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (i.e., non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation embeddings of Laman circuits. All self-stresses on a planar graph correspond to liftings to piece-wise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs.Comment: 32 pages, 23 figure

    Geometric realizations of the accordion complex of a dissection

    Get PDF
    Consider 2n2n points on the unit circle and a reference dissection D∘\mathrm{D}_\circ of the convex hull of the odd points. The accordion complex of D∘\mathrm{D}_\circ is the simplicial complex of non-crossing subsets of the diagonals with even endpoints that cross a connected subset of diagonals of D∘\mathrm{D}_\circ. In particular, this complex is an associahedron when D∘\mathrm{D}_\circ is a triangulation and a Stokes complex when D∘\mathrm{D}_\circ is a quadrangulation. In this paper, we provide geometric realizations (by polytopes and fans) of the accordion complex of any reference dissection D∘\mathrm{D}_\circ, generalizing known constructions arising from cluster algebras.Comment: 25 pages, 10 figures; Version 3: minor correction

    A bijection for rooted maps on general surfaces

    Full text link
    We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, that is orientable and non-orientable as well. This general construction requires new ideas and is more delicate than the special orientable case, but it carries the same information. In particular, it leads to a uniform combinatorial interpretation of the counting exponent 5(h−1)2\frac{5(h-1)}{2} for both orientable and non-orientable rooted connected maps of Euler characteristic 2−2h2-2h, and of the algebraicity of their generating functions, similar to the one previously obtained in the orientable case via the Marcus-Schaeffer bijection. It also shows that the renormalization factor n1/4n^{1/4} for distances between vertices is universal for maps on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation on any fixed surface converge in distribution when the size nn tends to infinity. Finally, we extend the Miermont and Ambj{\o}rn-Budd bijections to the general setting of all surfaces. Our construction opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.Comment: v2: 55 pages, 22 figure
    • …
    corecore